An-Najah National University

Mohammad N. Almasri


  • Bookmark and Share Email
  • Thursday, July 1, 2004
  • Applicability of Statistical Learning Algorithms in Groundwater Quality Modeling
  • Published at:Not Found
  • Four algorithms are outlined, each of which has interesting features for predicting contaminant levels in groundwater. Artificial neural networks (ANN), support vector machines (SVM), locally weighted projection regression (LWPR), and relevance vector machines (RVM) are utilized as surrogates for a relatively complex and time-consuming mathematical model to simulate nitrate concentration in groundwater at specified receptors. Nitrates in the application reported in this paper are due to on-ground loadings from fertilizers and manures. The practicability of the four learning machines in this application is demonstrated for an agriculture-dominated watershed where nitrate contamination exceeds the maximum allowable contaminant level at many locations. Cross-validation and bootstrapping techniques are used for both training and performance evaluation. Prediction results of the four learning machines are rigorously assessed using different efficiency measures to ensure their generalization ability. Prediction results show the ability of learning machines to build accurate models with strong predictive capabilities and, hence, constitute a valuable means for saving effort in groundwater contaminant modeling and improving modeling performance.



  • Bookmark and Share Email
Leave a Comment


Mohammad Nihad Almasri
Show Full ProfileEnglish CV


Please do not email me if you do not know me
Please do not e-mail me if you do not know me