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Four algorithms are outlined, each of which has interesting features for predicting 

contaminant levels in groundwater. Artificial neural networks (ANN), support vector 

machines (SVM), locally weighted projection regression (LWPR), and relevance vector 

machines (RVM) are utilized as surrogates for a relatively complex and time-consuming 

mathematical model to simulate nitrate concentration in groundwater at specified 

receptors.  Nitrates in the application reported in this paper are due to on-ground loadings 

from fertilizers and manures. The practicability of the four learning machines in this 

application is demonstrated for an agriculture-dominated watershed where nitrate 

contamination exceeds the maximum allowable contaminant level at many locations. 

Cross-validation and bootstrapping techniques are used for both training and performance 

evaluation. Prediction results of the four learning machines are rigorously assessed using 

different efficiency measures to ensure their generalization ability. Prediction results 

show the ability of learning machines to build accurate models with strong predictive 

capabilities and, hence, constitute a valuable means for saving effort in groundwater 

contaminant modeling and improving modeling performance. 
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1. INTRODUCTION 55 
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Groundwater provides one-third of the world’s drinking water. Since surface 

water is largely allocated, demand on the finite groundwater resources is increasing. 

However, groundwater is highly susceptible to contamination. This vulnerability poses 

serious threat to the environment and can limit the value of the resource to society as a 

whole. Groundwater can be contaminated by localized releases from waste disposal sites, 

landfills, and underground storage tanks. Pesticides, fertilizers, salt water intrusion, and 

contaminants from other nonpoint source pollutants are also major sources of 

groundwater pollution (CGER, 1993). 

Recognition of groundwater contamination problems and the growing demand for 

quality water has generated a need for powerful quantitative predictive models that are 

reliable, accurate, and resilient against uncertainty. Such models must have high 

predictive capability to be utilized in mitigating groundwater contamination. Process-

based contaminant transport simulations rely on solving the advection-dispersion-reaction 

governing equation (Atmadja and Bagtzoglou, 2001). This simulation entails a full 

understanding of the underlying physics controlling advection, dispersion, retardation, 

hydrodynamic, and chemical behavior. The utility of such models is constrained by their 

limited predictive power.  Moreover, their reliability can be diminished by the paucity of 

data on aquifer structure, heuristic assumptions, and limited information for model 

validation. In addition, such models are generally computationally expensive (Hassan and 

Hamed, 2001; Wagner, 1992; Kunstmann et al., 2002).  
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To overcome these limitations, researchers have sometimes utilized 

approximation tools as surrogate for the mathematical models. These tools are 

characterized by their ability to quickly capture the underlying physics and provide 

predictions of system behavior. Many researchers have used learning machines, such as 

artificial neural networks (ANN), as surrogates for the mathematical model. The 

advantage of an ANN is that it does not require knowledge of the mathematical form of 

the relationship between the inputs and corresponding outputs. As a successful pattern 

recognition algorithm, ANNs have been utilized to “learn” to accurately mimic the 

behavior of a solute transport model so that it can be later employed in an optimization 

framework for remediation purposes (Rogers and Dowla, 1994; Rogers et al., 1995). Aziz 

and Wong (1992) further used ANNs to estimate aquifer parameters from pumping-test 

drawdown records. Morshed and Kaluarachchi (1998b) estimated saturated hydraulic 

conductivity and other parameters in the problem of free product migration and recovery 

using ANNs. Readers interested in ANN approximations are referred to ASCE Task 

Committee (2000a, b) and Maier and Dandy (2000). 

ANNs have been combined with genetic search algorithms to dramatically 

accelerate the search process in groundwater optimization models. Primarily, ANNs are 

used to expedite the process of calculating the objective function in groundwater 

management and optimization problems (Rogers and Dowla, 1994; Rogers et al., 1995; 

Morshed and Kaluarachchi, 1998a, b; Aly and Peralta, 1999; Johnson and Rogers, 2000; 

Almasri, 2003). For instance, Rogers et al. (1995) demonstrated that an ANN was 

approximately 1.8x107 times faster than the groundwater flow and contaminant transport 

code used in their study. However, the ASCE Task Committee (2000b) concluded that 
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vigilance must be exercised when applying this combination. This caution stems in part 

from the potential for ANNs to fail to generalize well when trained with limited data. 

In addition to the application of ANNs, the past decade has witnessed a growing 

advancement in data-driven modeling through the development of intelligent systems. 

Again, such systems “evolve” or “learn” reliable models using empirical records and 

qualitative physics that characterize the input-output behavior of physical phenomena. 

The intelligent systems approaches provide methods for flexible estimation (or 

“learning”) with limited data to achieve high levels of generalization and prediction 

accuracy. Among these approaches is a new learning methodology called support vector 

machines (SVMs), which were developed for such learning objectives (Vapnik, 1995). 

SVMs rely on the statistical learning theory (SLT) known as Vapnik-Chervonenkis 

theory (Vapnik, 1982, 1995, 1998). SVMs are now receiving enthusiastic attention 

similar to that of ANNs when they were first introduced, and are becoming an active field 

of machine learning research. Good prediction results have been reported in many SVM 

applications. For example, upon using SVMs for feature classification of digital remote 

sensing data and prediction of horizontal forces on a vertical breakwater, Dibike et al. 

(2001) concluded that SVMs produced results to comparable those of ANNs. However, 

the use of SVMs is expected to surpass ANN applications due to their superior 

performance in many problems that is due to its generalization capability (). 

High dimensionality of the input space is often a serious problem associated with 

learning machines. A large training set that is able to provide a good distribution of high 

dimensional data is essential for successful learning. Locally weighted projection 

regression (LWPR) is an incremental nonparametric learning machine (not memory-
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based) that uses special projection regression techniques to deal efficiently with high 

dimensional spaces (Vijayakumar and Schaal, 2000a, b). LWPR is numerically robust 

and of linear computational complexity in the number of input dimensions. The key 

feature of the LWPR algorithm is the use of a spatially, locally nonlinear function 

approximation for high dimensional input data that have redundant and irrelevant 

components (Vijayakumar and Schaal, 2000a, b; Schaal et al., 2002). LWPR has shown 

remarkable success in real-time robot learning and has outperformed models based on 

simulation of the physical processes (Schaal et al., 2002). The robust incremental nature 

of LWPR could be employed to handle the concerns of the ASCE Task Committee 

(2000b) about the inability of ANNs to predict when the scope of the problem changes in 

the context of a dynamic system. Thus, the motivation behind exploring LWPR models 

originates from their suitability to operate in real time, and their resilience against 

negative inference when new data are presented (Atkenson et al., 1997). 

The absence of probabilistic outputs that provide estimates of the confidence and 

reliability of the model predictions has led to the development of another learning 

machine called the relevance vector machine (Tipping, 2001). Relevance vector machines 

(RVM) address the uncertainty in both data and parameters that plague most of the 

groundwater quality models (Kunstmann et al., 2002), for example, in an efficient and 

effective manner. RVMs rely on the Bayesian concept and utilize an inductive modeling 

procedure that allows incorporation of prior knowledge in the estimation process 

(Tipping, 2000). The structure of the RVM model is identified parsimoniously and has 

the potential for broad applications. The key features of RVMs are their good 
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generalization accuracy and sparse formulation. State-of-the-art prediction results have 

been reported in many applications where RVMs have been used (Li et al., 2002). 

SVMs, LWPRs, and RVMs have not been previously utilized in groundwater 

related studies to mimic physically based relationships in the simulation of the fate and 

transport of contaminants in groundwater. The objective of this paper is to introduce 

several learning machines and examine their ability to produce models that can be 

effectively used to reduce the cost and complexity of transport simulation.  

2. THEORETICAL BACKGROUND 

The general pattern recognition problem can be described as follows.  A learning 

machine is given a set, D, of M training pairs of data, [xi, yi], i = 1, …, M.  The data 

training pairs are independent and identically distributed (i.i.d.) and consist of an N-

dimensional vector, x ∈ RN, and the response or output, y ∈ R.  The goal of the learning 

machine, then, is to estimate an unknown continuous, real-valued function, f(x) that 

makes accurate predictions of outputs, y, for previously unseen values of x. 

2.1 Artificial Neural Networks 

ANNs present an information-processing paradigm for pattern recognition 

(McCulloch and Pitts, 1943).  ANNs use input-output response patterns to approximate 

the underlying governing rules of the output responses corresponding to specific inputs in 

a convoluted physical space (Morshed and Kaluarachchi, 1998b). The objective of the 

training process for ANNs is to calculate the optimal weights of the links in the neural net 

by minimizing the overall prediction error.  This is known as empirical risk minimization. 
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In this work, ANNs are trained using the back-propagation algorithm (BPA) as developed 

by Rumelhart et al. (1986). For a detailed illustration of ANN functionality, the interested 

reader may refer to Maier and Dandy (2000), Kecman (2001), and Haykin (1999). 

2.2 Support Vector Machines 

SVMs represent a machine-learning model where prediction error and model 

complexity are simultaneously minimized. Unlike ANNs, the SVM structure is not fixed 

in advance with a specific number of adjustable parameters, but can adapt with data. 

Introduced by Vapnik (1995), the basic idea behind SVMs is mapping the input space 

into a high-dimensional feature space utilizing kernels (Vapnik, 1995). This so-called 

“kernel-trick” enables the SVM to work with feature spaces having very high 

dimensions. SVMs generally result in a function estimation equation analogous to the 

following form: 

o
m

i ii wwf +φ×= ∑ =1
)();( xwx        (1) 

where the functions {  are feature space representations of the input query , m 

is the number of patterns that contain all the information necessary to solve a given 

learning task, hereinafter referred to as support vectors, and w = {wo w1 … wm} are the 

SVM parameters. The mapping of x by 

m
ii 1)}( =φ x x

)(xφ into a higher dimensional feature space is 

chosen in advance by selecting a suitable kernel function that satisfies Mercer’s 

conditions (Vapnik, 1995, 1998). By performing such a mapping, the learning algorithm 

seeks to obtain a hyperplane that is necessary for applying the linear regression in the 

SVM formulation (Kecman, 2001). Now the problem is to determine w and the 

corresponding m support vectors  from the training data. To avoid the use of empirical 
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risk minimization (e.g., quadratic residual function), which may result in overfitting, 

Vapnik (1995) proposed a structural risk minimization (SRM) in which one minimizes 

some empirical risk measure regularized by a capacity term. SRM is a novel inductive 

rule for learning from a finite data set and has shown good performance with small 

samples (Kecman, 2001). This is the most appealing advantage of SVMs, especially 

when data scarcity is a limitation on the use of process-based models or ANNs in 

groundwater quality modeling (ASCE Task Committee, 2000b; Kunstmann et al., 2002). 

In line with SRM, therefore, the objective function of SVM is to minimize the following:   

2
1

|||||),(|1)( wwxw +−= ∑ = ε

M
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M

E       (2) 195 

Vapnik (1995) employed the ε-insensitive loss function, | ε|),( wx ii fy − , where 

the difference between estimated output, , and the observed output, , lies in 

the range of 
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197 ),( wxif iy

ε±  do not contribute to the output error. The  ε-insensitive loss function is 

defined as: 
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Vapnik (1995) has shown that Equation (2) is equivalent to the following dual form: 

oi
M

i ii Kfy λαα +−== ∑ =
∗∗ ),()(),,(ˆ

1
xxααx        (4) 

where the Lagrange multipliers αi and α i
*  are required to be greater than zero for i = 1, 

…, M, and is a kernel function defined as an inner product in the feature space, 

. Typically, the optimal parameters of Equation (4) are found 

by solving its dual formulation: 

),( xx iK

(
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The parameter  is a user-defined constant that stands for the trade-off between model 

complexity and the approximation error. Equation (5) comprises a convex constrained 

quadratic programming problem (Vapnik, 1995, 1998). As a result, the input vectors that 

correspond to nonzero Lagrangian multipliers, 

c

iα  and , are considered as the support 

vectors. The SVM model thus formulated, then, is guaranteed to have a global, unique, 

and sparse solution. Despite the mathematical simplicity and elegance of SVM training, 

experiments prove they are able to deduce relationships of high complexity (Liong and  

Sivapragasam, 2002; Yu et al., 2004; Yu, 2004). 
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2.3 Relevance Vector Machines 

RVMs adopt a Bayesian extension of learning. RVMs allow computation of the 

prediction intervals taking uncertainties of both the parameters and the data (Tipping, 

2000). RVMs evade complexity by producing models that have structure and by a 

parameterization process that is appropriate to the information content of the data. RVMs 

have the identical functional form as SVMs, as in Equation (2), but using kernel terms, 

, that correspond to nonlinear and fixed basis functions (Tipping, 

2001). The RVM model seeks to forecast 

)()}({ 1 i
m
ii K xx,x ≡=φ

y)  for any query x according to 223 

( ) nfy ε+= wx,) , where ε and  is a vector of weights. The 

likelihood of the complete data set can be written as: 
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where Φ . Maximum likelihood estimation 

of and in Equation (6) often results in severe overfitting. Therefore, Tipping (2001) 

recommended imposition of some prior constraints on the parameters, w , by adding a 

complexity penalty to the likelihood or the error function. This a priori information 

controls the generalization ability of the learning system.  Primarily, new higher-level 

hyperparameters are used to constrain an explicit zero-mean Gaussian prior probability 

distribution over the weights,  (Tipping, 2000): 
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where α  is a hyperparameter vector that controls how far from zero each weight is 

allowed to deviate (Schölkopf and Smola, 2002). For completion of hierarchical prior 

specifications, hyperpriors over  and the noise variance, , are defined. 

Consequently, using Bayes’ rule, the posterior over all unknowns could be computed 

given the defined noninformative prior distributions: 
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The analytical solution of the posterior in Equation (8) is intractable. Thus, 

decomposition of the posterior according to  

is used to facilitate the solution (Tipping, 2001). The posterior distribution of the weights 

is:  
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This has an analytical solution where the posterior covariance and mean are, respectively, 
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 In related Bayesian models, Equation (10) is known as the marginal likelihood, 

and its maximization is known as the type II-maximum likelihood method (Berger, 1985; 

Wahba, 1985). MacKay (2003) refers to this term as the “evidence for hyperparameter” 

and its maximization as the “evidence procedure.” Hyperparameter estimation is carried 

out in iterative formulae, e.g., gradient descent on the objective function (Tipping, 2001; 

MacKay, 2003).  

The evidence of the data allows the posterior probability distribution to 

concentrate at very large values of . Respectively, the posterior probability of the 

associated weight will be concentrated at zero. Therefore, one could consider the 

corresponding inputs irrelevant (Tipping, 2001).  In other words, the outcome of this 

optimization is that many elements of  go to infinity such that  will have only a few 

nonzero weights that will be considered as relevant vectors. The relevant vectors (RV) 

can be viewed as counterparts to support vectors (SV) in SVMs; therefore, the resulting 

α

α w
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model enjoys the properties of SVMs (i.e., sparsity and generalization) and, in addition, 

provides estimates of uncertainty bounds.  

2.4 Locally Weighted Projection Regression 

LWPR is a new algorithm that achieves a nonlinear function approximation in a 

high dimensional space that might have redundant input dimensions. LWPR is considered 

to be the first spatially localized incremental learning system that can efficiently work in 

high dimensional spaces (Vijayakumar and Schaal, 2000a). LWPR is embedded within a 

projection regression algorithm along with an incremental nonlinear function 

approximation. Projection regression (PR) was employed to cope with high dimensions 

through using single variate regressions along particular local projections in the input 

space to counter the curse of dimensionality.  Local projection is used instead of global 

projection to accomplish local function approximation and to detect irrelevant input 

dimensions (Vijayakumar and Schaal, 2000b). Therefore, projection regression (PR) and 

function approximation are both utilized in LWPR. In PR algorithms, one seeks to 

spatially localize a linear function approximation along the desired projections. Partial 

least squares (PLS) is adopted here where one computes orthogonal projections of input 

data and consequently estimates a univariate regression along each component on the 

residuals of the previous step (Vijayakumar and Schaal, 2000a). Assume that the data are 

generated according to the standard linear regression model, y , where  

represents white noise. In PLS projection regression, orthogonal directions, , 

are sought. Along each projection, finding the regression coefficient,

ε+×β= xT ε

uk ku ,....,1

β , is found from 

linear regression. In the LWPR learning mechanism, weighing kernels, c, that define the 

286 

287 
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locality are determined, each of which computes a weight w , for each data 

point . The estimated weight is a function of the distance of the query from the 

center of the weighing kernel . For a Gaussian kernel,  is: 
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where  is the metric distance that determines the size and shape of the region of validity 

of the linear model, called the “receptive field”. For instance, in case of the  local linear 

models, to make a prediction for a given input vector , each linear model must estimate 

a prediction , l . Accordingly, the total output of the machine is a weighted 

mean of all linear models: 

L

x

l L,,1L=

= lŷ           (12) 297 
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Algorithmically, for a new training query , if no linear model is activated by 

more than a predefined threshold then a new receptive field is defined to be centered at 

that query. The metric distanceη  is of paramount importance to the concept of LWPR 

since it controls the validity of the local unit’s shape and size. Thus, optimizing such a 

parameter for each receptive field is necessary. Vijayakumar and Schaal (2000b) 

proposed to address this optimization problem through use of an incremental gradient 

descent algorithm based on a leave-one-out cross-validation criterion rather than the 

empirical error. Finally, the utility of LWPR in function approximation has been 

demonstrated in data sets of up to 50 dimensions and it has shown a very robust learning 

performance (Vijayakumar and Schaal, 2000a, b). 

),( yx
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3. APPLICATIONS OF LEARNING MACHINES 308 
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The most pervasive groundwater contaminant is nitrate, which results from 

fertilizers and animal wastes (CGER, 1993). Agricultural practices, including fertilizer 

and manure applications, result in nonpoint source pollution of groundwater, and the 

effects of these practices accumulate over time (Schilling and Wolter, 2001). Hence, 

nitrate levels in groundwater have increased proportionally and concurrently with rises in 

fertilizer application (USDA, 1987; DeSimone and Howes, 1998). Identification of areas 

with heavy nitrogen loadings from nonpoint sources is important for land use planners 

and environmental regulators. Once such high-risk areas have been identified, 

preventative measures can be implemented to minimize the risk of nitrate leaching to 

groundwater (Lee, 1992; Tesoriero and Voss, 1997). The need to introduce alternatives to 

protect groundwater quality is of critical importance, especially in areas where 

groundwater is the sole source of drinking water and because of the high cost of 

mitigating contaminated groundwater (Tesoriero and Voss, 1997).  

Aquifers can sustain a specific level of on-ground nitrogen applications without 

exceeding the maximum contaminant level (MCL). This sustainable loading, which 

might be considered the optimal loading, is a function of the on-ground nitrogen loadings 

from existing sources of nitrogen, nitrogen dynamics in the soil, the groundwater flow 

system, and the nitrate fate and transport processes in groundwater (see Figure 1). An 

optimization approach can be used to determine the sustainable loadings. In the 

optimization process, the objective function representing the sustainable loading is 

evaluated successively by executing the mathematical model depicted in Figure 1 to 

ultimately predict nitrate concentration in groundwater. The work reported in this paper is 
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motivated by the fact that the simulation of nitrate fate and transport in groundwater is a 

time-consuming process when successive runs are needed in an optimization context or in 

the assessment of management alternatives, especially when conducting a regional-scale 

analysis for fine-resolution decision variables.  

The following sections demonstrate the learning machines that have been 

discussed. Pattern recognition is depicted through training, validation, and testing using 

patterns generated from mathematical models of soil nitrogen dynamics and nitrate fate 

and transport in groundwater. The resulting models are intended to capture the nitrogen 

dynamics in the soil, the groundwater flow system, and the nitrate fate and transport 

processes in groundwater (see Figure 1). Results are demonstrated and discussion is 

provided to illustrate the predictive ability of the models. Comparison of prediction 

efficiencies is made and conclusions are provided. Moreover, the practicability of these 

learning machines is demonstrated through a case study of an actual regional aquifer in 

an agriculture-dominated watershed. 

3.1 Site Description 

The Sumas-Blaine aquifer (see Figure 2) is located in the Nooksack watershed in 

Whatcom County in the northwest corner of Washington State. The water table is mostly 

shallow, typically less than 10 feet, but a few exceptions occur where the depth to the 

water table ranges from 25 feet to 50 feet (Tooley and Erickson, 1996). Precipitation 

ranges from over 60 inches per year in the northern uplands to about 40 inches per year in 

the lowlands. Recharge to the aquifer is largely due to the infiltration of precipitation and 

irrigation. The actual area considered in this work includes parts of Canada because there 
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is a substantial manure application on berry plantations located in the portions of the 

watershed that lie in Canada. Since the groundwater flow is from north to south towards 

the Nooksack River, the nitrogen-rich manure application in the Canadian side has a 

major influence on groundwater quality in the south (Stasney, 2000; Mitchell et al., 

2003). The total area of the extended aquifer region is approximately 376 square miles 

(Figure 2). There are 39 drainages representing the extended Sumas-Blaine aquifer 

region. Due to the intensive agricultural activities in the study area (see Figure 2 for the 

land cover distribution), groundwater quality in the aquifer has been continuously 

degrading in recent decades and nitrate concentrations are increasing (Almasri and 

Kaluarachchi, 2004b). Since the role of nitrate in eutrophication is well-recognized 

(Wolfe and Patz, 2002), nitrate contamination of the surface water of the study area is a 

concern as it greatly affects fish habitat. The transport of nitrate to surface water occurs 

mainly via discharge of groundwater during baseflow conditions (Schilling and Wolter, 

2001; Bachman et al., 2002). Therefore, the prevention of groundwater contamination 

from nitrate
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 also protects surface water quality. 

3.2 Conceptualization of Nitrogen Transport 

As depicted in Figure 1, the conceptual model of nitrate fate and transport in 

groundwater includes (Almasri and Kaluarachchi, 2004a,c): (i) characterization of land 

use cover to compute the spatial distribution of on-ground nitrogen loadings; (ii) detailed 

assessment of all nitrogen sources in the study area and their allocation to the appropriate 

land cover classes; (iii) simulation of the soil nitrogen dynamics; (iv) prediction of nitrate 

leaching to groundwater; (v) modeling the groundwater flow system; and (vi) detailed 
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description of nitrate fate and transport processes in groundwater. In the next sections, a 

general description of the integrated sub-systems is provided. 

On-Ground Nitrogen Loading - A major step in calculating the amount of nitrate 

leaching to groundwater is the estimation of the on-ground nitrogen loadings from 

different nitrogen sources. There are many sources of nitrogen, natural and 

anthropogenic, which can contribute to groundwater contamination (Hallberg and 

Keeney, 1993). To differentiate between the different land application categories in order 

to assign the appropriate nitrogen loadings, the national land cover data (NLCD) grid was 

utilized in this study. 

Soil Nitrogen Dynamics - The amount of nitrate found at any point in groundwater is the 

product of various physical, chemical, and biological processes that are taking place in 

the soil zone and groundwater (Johnsson et al., 2002). The major soil transformation 

processes that greatly affect nitrate leaching are mineralization-immobilization, 

nitrification, denitrification, and plant uptake (Addiscott et al., 1991). In addition, the soil 

organic matter and crop residues influence the soil nitrogen content.  

Fate and Transport in Groundwater - Many processes, including advection, 

dispersion, and decay, can control the fate and transport of nitrate in groundwater. 

Denitrification is the dominant chemical reaction that affects nitrate concentration in the 

groundwater under anaerobic conditions (Frind et al., 1990; Postma et al., 1991; Korom, 

1992; Tesoriero et al., 2000; Shamrukh et al., 2001). Denitrification can be expressed 

using first-order kinetics with a first-order decay coefficient (Frind et al., 1990; 

Shamrukh et al., 2001). Minerals rarely sorb nitrate because it is negatively charged. As a 

result, it is highly mobile in mineral soils (Shamrukh et al., 2001).  
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Based on the above discussion, the long-term steady-state nitrate concentration 

distribution in groundwater can be expressed as a function of the soil and groundwater 

properties and other parameters that concurrently influence the nitrate concentration in 

groundwater, spatially and temporally. This illustrates the fundamental difficulty in the 

accurate modeling of fate and transport of nitrate in groundwater, especially at a regional 

scale. 
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3.3 Input and Predicted Output 

The development of the learning machines requires the precise identification of 

the input and output vectors. Since the objective is to simulate the effect of on-ground 

nitrogen loadings from manure and fertilizers on nitrate concentrations in the 

groundwater at specified receptors, long-term nitrate concentrations, , will be predicted 

according to the following formulation: 

C

( MFfC ττ ,=            (13) 410 

411 

412 

413 

414 

415 

416 

417 

418 

where τF and τM are the on-ground nitrogen loadings from fertilizers and manure for each 

nitrate receptor. Although Equation (13) does not include all the applicable soil and 

groundwater properties and parameters, many studies have been successful in predicting 

the nitrate contamination of groundwater by considering only nitrogen loadings 

(Tesoriero and Voss, 1997; Nolan et al., 2002; Mitchell et al., 2003). Following this 

approach, machines in this work, the machines are used to predict the two-dimensional 

groundwater concentration distribution of nitrate only as a function of on-ground nitrogen 

loadings from manure and fertilizers.  
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3.4 Methodology 419 

420 
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426 

The conceptual model depicted in Figure 1 is applied to the study area to develop 

the input-output response patterns based on Equation (13). The models of on-ground 

nitrogen loadings and fate and transport of nitrate in the soil were developed by Almasri 

and Kaluarachchi (2004a, c), the groundwater flow model was developed by Kemblowski 

and Asefa (2003) using MODFLOW (Harbaugh and McDonald, 1996), and the model of 

nitrate fate and transport in groundwater was developed by Kaluarachchi and Almasri 

(2004) using MT3D.  

Having estimated and Fτ Mτ , the soil nitrogen model calculates the amount of 

nitrate leaching to groundwater and provides inputs to the nitrate fate and transport 

model, which in turn computes the corresponding C vector at the specified receptors. 

Afterwards, the patterns of C and 

427 

428 

429 

Fτ and Mτ  are allocated into training and testing sets 

and the learning machines are developed with the appropriate selection of machine 

parameters. A total of 56 nitrate receptors was selected, as depicted in Figure 3. The 

selected receptors have nitrate concentrations exceeding the MCL under current 

conditions. These receptors cover 14 selected drainages that contribute the majority of the 

on-ground nitrogen loadings in the study area.  Such components of nitrogen loadings 

will comprise the inputs for the learning machines that is 28 inputs. Since the resulting 

models are to simulate the effect of managing fertilizer and manure applications on 

nitrate concentrations at the receptors depicted in Figure 3, two inputs are assigned for 

each drainage pertaining to fertilizer and manure loadings. 

430 
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3.5  Learning Machines Construction 440 
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Obtaining an optimal level of performance for any learning machine entails a 

considerable number of design choices. The objectives of building optimal model 

architecture are to produce acceptable predictions and to assure generalization abilities. 

The approach of selecting an optimal architecture encompasses a rigorous statistical 

analysis and expert knowledge. Also, different models can be deduced given different 

data sets, which can further complicate the process of model selection. However, for 

successful model construction any training data set should carry enough idiosyncratic 

information about the processes involved. In this paper, 268 out of the available 440 

patterns were randomly selected to develop the model specifications and structure. The 

justification for selecting 268 training patterns is that, as illustrated in Figure 4, no 

significant improvement in cross-validation error was achieved for greater numbers of 

patterns (see Results and Discussion section). The remaining 172 patterns were set aside 

for model validation. Intuitively, since training and testing sets were allocated randomly 

from the same domain (the pool of 440 patterns), they are likely to have similar 

information content and statistical significance. This should be expected to yield good 

performance of ANNs where overfitting is most likely to occur. For all the machines, 

input-output scaling is performed linearly using the minimum and maximum values of 

each input and output component. 

The problem of choosing a suitable architecture for a multilayer perceptron 

(MLP) ANNs lies in specifying the type of activation function to be used and the number 

of neurons in the hidden layer. Four types of kernel functions —namely, polynomial 

kernel, radial basis function kernel, )(⋅sig , and )tanh(⋅  kernel—were used. For this case 462 
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study and data set trial-and-error analysis better performance was achieved with the 

 activation function. Upon producing the probability distribution function of the 

generalization error using cross-validation techniques, it was found that eight-hidden 

neurons produced an acceptable bias-variance trade-off. Different random initial weights 

may produce different training results, thus the training over the cross-validation sub-

samples is performed at a fixed seed value. 
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)(sig ⋅

Choosing a suitable kernel for both SVM and RVM models and receptive field 

shape for the LWPR is of paramount importance since these steps comprise the building 

blocks of the machines. While some authors recommend that the choice of kernel type 

and kernel parameters be done with knowledge of the underlying physical processes to be 

represented by the learning machine, in this study, a simple trial-and-error approach was 

used to select the type of kernel function for both the SVM and RVM models. For kernel 

parameter selection, cross-validation criteria were minimized over a specific range. The 

radial basis function, with a parameter value of 0.5, was used for the SVM model. The 

parameter ε and c had to be set to their optimal values during the model training. For a 

given data set proper ε and c selection ensure good generalization performance. The 

insensitive-error function parameter is largely selected to reflect the desired accuracy and 

could be optimally tuned to particular noise density and it was set at ε = 0.01 in this case 

study. Identification of the optimal value of the trade-off  between model complexity and 

the approximation error was set at c = 1 (i.e., the tradeoff between an approximation error 

and model complexity) as a result of 10-fold cross-validation error. A Gaussian kernel 

function with width of 1.5 was used in the case of the RVM model, while in the LWPR 

analysis a Gaussian kernel was used, with the kernel metric distance optimized by 
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application of a gradient descent algorithm based on a leave-one-out cross-validation 

criterion. The RVM model was found to have the smallest number of parameters (e.g., 

only the kernel type and its width parameter). Netlab, a toolbox of Matlab
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® functions and 

scripts (Bishop, 1995; Nabney, 2001), was used for these analyses. For the SVM model, a 

Matlab interface to SVMlight, written by Schwaighofer (2004), was used. SVMlight is an 

implementation of Vapnik's support vector machine design (Vapnik, 1995). For 

development of the RVM and LWPR models, the Matlab implementation of Tipping 

(2001) and Vijayakumar and Schaal (2000a) was used. 

To ensure good generalization of the inductive learning algorithm given scarce 

data, the machine performance was been tested on many bootstrap samples (i.e., 1000 

bootstrap samples) from the original data set in order to explore the implications of the 

assumptions made about the nature of the data. This analysis provides a way to evaluate 

the significance of some indices and thus draw conclusions about model reliability. Using 

bootstrapping techniques, one can also deduce rough confidence bounds that are more 

revealing of model performance than single values (Willmott et al., 1985). Because of 

concerns about the underlying assumptions of each of the considered machines, rigorous 

model performance measures were performed to assess the capacity of each model (see 

Appendix I). 

4. RESULTS AND DISCUSSION 

While ANNs have been extensively employed in water resources (ASCE Task 

Committee, 2000a, b), the newer SVM, LWPR, and RVM approaches bring with them 

many potentially advantageous features, especially generalization performance and 
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sparse representation. It is with respect to these characteristics that the experimental 

results on the performance of each machine are presented and discussed. 

A widely advocated approach to the evaluation and comparison of inductive 

learning machines involves training with known input-output data and then testing the 

resulting machine against other data not used in training or validation.  

There are 268 patterns used for model construction, specification, and training. To 

support the selection of the number of patterns in the training set, Figure 4 was developed 

and utilized. Specifically, the more examples that explain the underlying physics, the 

better will be the predictability of the machine. Figure 4 provides information about the 

number of data points required for the machine to have enough information about the 

system (i.e., error becoming asymptotic as a function of the sample size). In the case of 

utilizing more than 268 patterns, there is no significant contribution of additional data to 

enhance the 5-fold cross-validation error as a measure of machine ability to generalize. In 

other words, and according to Figure 4, about 39% of all samples in the data set can be 

reserved for testing. It should be pointed out, however, that the recommended percentage 

of samples for testing might be even higher for larger data sets. Good performance in the 

testing phase is believed to be evidence for an algorithm’s practical plausibility and 

provides an evaluation of the model’s predictive abilities. Achievement of this objective 

is typically measured by the correlation coefficient, coefficient of efficiency, bias, root-

mean-square-error (RMSE), mean absolute error, and index of agreement. For more 

details regarding these goodness-of-fit measures, the interested reader can refer to David 

and Gregory (1999) and Willmott et al. (1985). 
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Table 1 presents the key statistics to evaluate the efficiency of the four learning 

machines in the training and testing phases. All the machines have higher performance in 

the training phase than in the testing phase. The loss of performance on the testing set 

addresses the machine susceptibility to the issue of overtraining. There is a noticeable 

reduction in performance on the testing data set (i.e., difference between machine 

performance on training and testing) for both the ANN and LWPR models. The small 

decline of performance on both RVM and SVM models indicates their ability to avoid 

overtraining and hence generalize well. 

Figures 5 and 6 show scatter plots of predicted (from the learning machine) versus 

simulated (from the physical model) nitrate concentrations at two selected receptors. The 

results indicate that the four learning machines did provide good prediction performance. 

Figure 5 illustrates the prediction efficiency at the 19th receptor (see Figure 3). The SVM 

model shows the highest accuracy with a coefficient of efficiency of 0.866, followed by 

the RVM model at 0.864, the LWPR model at 0.837, and lastly the ANN model at 0.756. 

The SVM model shows an average underbias of 0.021, while the other machines show an 

overbias of 0.027, 0.031, and 0.037 for the RVM, LWPR, and ANN models, respectively. 

Figure 6 demonstrates the performance of the machines at the 34th receptor (see Figure 

3). The RVM model has a coefficient of efficiency value of 0.993, followed by the SVM, 

ANN, and LWPR models with values of 0.988, 0.981, and 0.980, respectively. Again, the 

RVM model shows the lowest bias, followed by the ANN, SVM, and LWPR models. The 

ANN model experiences the highest variance as judged by a RMSE value of 0.113, while 

the lowest is for the RVM model with RMSE = 0.066. 
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Figure 7 shows the prediction performance of the four machines at each receptor 

in terms of RMSE. ANN performed the best for 25 receptors, while RVM performed the 

best for 19 followed by SVM for 12. As evaluated by the mean absolute bias, SVM 

performed the best for 21 receptors, ANN for 13 receptors, and RVM and LWPR for 11 

receptors, each. From a bias-variance perspective, the ANN tends to produce a low 

variance but high bias. SVM produced the best unbiased machine, yet it showed high 

variance. A good tradeoff between bias and variance seems to be shown by the RVM for 

this application. 

Figure 8 shows the coefficient of efficiency statistics for each receptor. The 

coefficient of efficiency represents an improvement over the coefficient of determination 

for model evaluation purposes in that it is sensitive to differences in the actual and model 

simulated means and variances (David and Gregory, 1999). For interpretation purposes 

for any machine, an efficiency coefficient of 0.9 indicates that the machine has a mean 

square error of 10 percent of the variance. The ANN model performed the best for 24 

receptors, while RVM performed the best for 20, followed by SVM for 11 receptors and 

LWPR for only one receptor. 

Table 2 provides empirical generalization estimates in terms of root-mean-square-

error (RMSE) based on cross-validation and bootstrapping over scaled data. Linear 

scaling to [0, 1] is performed for mapping real world measurement to a range of values 

appropriate for model execution. Bootstrapping is useful in a situation where the 

underlying sampling distribution of the data and the parameters is unknown and difficult 

to estimate. Therefore, these statistics are mostly utilized for model selection purposes 

and model reliability evaluation (Willmott et al., 1985). The model selection procedure 
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focuses on selecting the optimal set of model hyper-parameters by minimizing 

bootstrapping or cross-validation estimates of the prediction error. For instance, the 

number of hidden nodes in the ANN model was obtained by minimizing the variance and 

the mean of the 10-fold cross-validation error. For development of the SVM model, the 

10-fold cross-validation error was used to select the optimal trade-off, , between model 

complexity and the empirical risk. In their work with LWPR, Vijayakumar and Schaal 

(2000a) used the leave-one-out error estimates in the gradient descent algorithm in 

finding the metric parameters that specify the shape and region of validity of the 

receptive fields. One might notice that according to the hybrid bootstrap and 0.632+ 

estimator, the ANN model has significantly higher generalization capability than the 

other machines. However, the bootstrap estimates of the generalization error are 

optimistically biased which is evident in the case of the ANN model where overtraining 

results in a network that memorizes the individual examples rather than the trends in the 

data set. Besides using these statistics for model selection, one can also use them to 

provide confidence in the machine predictability, persistency, and robustness. As noticed 

in Table 2, the four machines produce almost similar generalization error.  
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The statistical results reported in Table 2 provide credible estimates of machine 

reliability and significance. The magnitude of the confidence interval for the accuracy 

measure of interest could be used as a measure of model reliability (Willmott et al., 

1985). Principally, it is straightforward to estimate the confidence intervals of these 

statistics. The width of the bootstrapping confidence intervals indicates implicit 

uncertainty in the machine parameters. A wide confidence interval indicates that the 

available training data set is inadequate to find a robust parameter set (Kuan et al., 2003). 
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The RVM model shows the narrowest confidence bounds. For example in the case of 

hybrid bootstrap and 0.632+, the RVM model has 

598 

000196.00232.0RMSE ±= . The 

SVM model shows a 20 percent increase in the confidence interval width, and both the 

ANN and LWPR models show a 30 percent increase when compared to RVM. Owing to 

the nonincremental application of LWPR in the testing (validation) phase, it produces the 

lowest generalization performance. The use of LWPR is expected to be exceptional in 

problems that are highly dynamic and characterized by nonstationarity (i.e., streamflow 

predictions). 
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Degrees of freedom are often used as a model complexity measure in model 

selection criteria. An important aspect in machine learning and more specifically model 

selection is to avoid overparameterized models, or in other words, in accordance with 

Occam’s Razor, the most parsimonious model is the best (MacKay, 1992, 2003). While 

the ANN model requires a liberal number of parameters (i.e., linkage weights) to produce 

satisfactory results, the SVM and RVM models provide functional formulations that 

produce similar generalization abilities with many fewer degrees of freedom. According 

to Vapnik (1998), generalization from finite data is possible if and only if the estimator 

has limited capacity (i.e., enforced regularization). 

The SVM model is characterized by a highly effective mechanism for avoiding 

overfitting that results in good generalization. The SVM formulation leads to a sparse 

model dependent only on a subset of training examples and their associated kernel 

functions (Vapnik, 1995). Tipping (2000) indicated that SVMs suffer from the absence of 

a probabilistic prediction capability that captures information about uncertainty and from 

the number of kernel functions that grows steeply with the size of the training data set, 
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from the necessity to manually tune some parameters, and from the selection of kernel 

function parameters (i.e., which also has to satisfy Mercer’s condition (Vapnik, 1995; 

Tipping, 2000)). Empirical results proved that RVMs are remarkable in producing an 

excellent generalization level while maintaining the sparsest structure. For example, the 

SVM utilized 120 patterns as support vectors out of the 268 patterns of the training set, 

while the RVM used only 26 patterns as relevance vectors, and LWPR used 40 receptive 

fields. However, the support vectors in the SVM model represent decision boundaries, 

while the RVM relevance vectors represent prototypical examples (Li et al., 2002). The 

prototypical examples exhibit the essential features of the information content and thus 

are able to transform the input data into the specified targets. This feature of both RVM 

and SVM could be further utilized to build up a sparse representation of the processes 

(e.g., monitoring network design). 

5. SUMMARY AND CONCLUSIONS 

The machine learning induction techniques examined here have shown the ability 

to build accurate models with strong predictive capabilities for groundwater quality and 

they offer a practical approach to some modeling difficulties encountered in water-related 

studies. Based on the evidence of the experiment, learning machines, other than ANNs, 

appear to be highly effective. The results of the analyses presented here show distinct 

performance preferences for each machine in a supervised-learning task. However, since 

the comparisons between the different learning machines were intended to be illustrative 

only, it should be strongly emphasized that no broader generalizations can be made about 

the superiority of any of the machines for all classes of problems. The complex nature of 

each of the learning algorithms that have been examined here makes it difficult to study 
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their statistical behavior in order to assess their performance objectively. Cross-validation 

techniques can be robust for tuning parameter selection because they make no 

assumptions about the data or noise distributions (Atkenson et al., 1997). 

In the development of the models discussed here, significant effort is required to 

build the machine architecture.  However, once developed and trained, the resulting 

models perform simulations in a small fraction of the time required by the process-based 

model. It can be concluded that learning machines could be confidently adopted as 

computationally efficient and sufficiently accurate substitutes for physical models in 

many applications. This feature is of great importance when conducting large numbers of 

consecutive model simulations, such as in an optimization context. Using traditional 

physically-based models, such simulations might be time-consuming to the extent that the 

entire process would be practically infeasible. 

There are no criteria as when to use each of the presented machine other than to 

bear in mind that ANNs minimize only the empirical risk by finding an optimal set of 

weights for the chosen number of hidden nodes, while SVMs minimize the structural risk 

to achieve estimators that are less susceptible to overfitting, as evident by the results 

depicted in Table 1. Besides, owing to the quadratic optimization, SVMs are uniquely 

solvable and there is no need to train them in a repetitive manner. In contrast, ANNs 

require repeated training on the data set until a working model is attained. LWPR and 

RVM entail iterative solutions until some stopping criteria are achieved. In addition, 

SVMs achieve a global solution in the search for optimal parameter values and there is no 

need for trial-and-error procedures to determine the final machine architecture, which is 

directly obtained from the optimization solution. Also, ANNs rely heavily on the 
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structure of the networks, which is proven nontrivial and considered the most important 

drawback of ANNs (Liong and Sivapragasam, 2002). The choice of the number of hidden 

units in ANNs is problem-dependent and, therefore, it is difficult to determine a priori the 

optimal network configuration. However, the performance of SVMs and RVMs depend 

largely on the choice of kernel functions, which is in a sense equivalent to the choice of 

the ANN structure. One may resort to cascade correlation or pruning techniques to adjust 

the ANN structure to the complexity of the problem in an automatic way (Fahlman and 

Lebiere, 1990). Primarily, in this application, ANNs, SVMs, RVMs, and LWPRs all 

achieved their goal, namely pattern recognition in nitrate contamination occurrences in 

groundwater. The resulting models, once constructed, are many orders of magnitude 

faster than the process-based model. The comparison studies of learning machines mostly 

revolve around the fact that superiority in performance heavily depends on the problem in 

hand. In other words, there is a wide range of common applications that are of interest 

where one machine will be proffered choice over the others. Strictly speaking, an ANN 

prediction is more accurate in some problems, while SVM might be stronger in others. 

RVM is the strongest when uncertainty bounds are required, and LWPR is the most 

widely advocated in dynamic situations due to its incremental nature (e.g., when the input 

distribution of the training data changes over time).  

One also has to keep in mind that ANNs and SVMs both suffer a decline in 

performance as the dimension of the data increase. Consequently, SVMs suffer from as 

many difficulties as ANNs and RVMs in finding the optimum solution when the size of 

the data set and/or the dimension of the input vector is large. When SVM is applied for 

solving large-size problems the computation time is prohibitively high. RVMs are 
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characterized by their ability to represent the information content of the data set without 

being degraded in terms of model complexity by an abundance of data yet it is also 

computationally exhaustive during the training. Both SVMs and RVMs exploit only the 

set of observations that contains all the information necessary for defining the final 

decision function.  

ANNs, SVMs, and RVMs are global learning methods; however, many argue that 

they could be improved and applied in a much broader context if they could be localized 

by using locally weighted training criteria (Atkenson et al., 1997; Vapnik, 1992). The 

learning formalism in RVMs, SVMs, and LWPRs filters out noise. ANNs, if not well-

trained, could learn the noise and hence result in overfitting. 

In summary, this paper has surveyed four learning machines that could be viewed 

as powerful alternative approaches to process-based models in some applications. The 

advantages and disadvantages of learning machines have been presented in comparison to 

each other along with several statistical criteria for judging model performance. The 

authors agree with the popular No Free Lunch (NFL) theorem (Wolpert and Macready, 

1995) and share the concern that “...for any algorithm, any elevated performance over 

one class of problems is exactly paid for in performance over another class”.  Similarly, 

quoting Magdon-Ismail (2000), “A learning algorithm that performs exceptionally well in 

certain situations will perform comparably poorly in other situations.” Essentially, the 

NFL theorem concludes that there is no learning algorithm that can be universally 

superior; therefore, one could fuse the advantageous features of the models in a “mixture 

experts system” (Jacobs et al., 1991; Jordan and Jacobs, 1994), which is a system that 

employs a set of experts trained independently on the same problem and thus benefits 
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from combining the recommendations of experts for making predictions. The outlook for 

the use of learning machines in water resources research and applications is very 

promising. 
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APPENDIX I 716 
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Model Performance 

Various error estimation measures have been adopted to evaluate the accuracy of 

machine predictions, and this paper applies some of these error estimation methods, such 

as cross-validation and bootstrapping. These concepts of resampling are motivated by 

data scarcity. A validation test must be performed to evaluate the performance of an 

inductive learning algorithm to ensure good generalization capabilities. Since the true 

distribution of system inputs and outputs is unknown, it is necessary to estimate the 

generalization error. Using common notation (e.g., McLachlan, 1992; Shakhnarovich et 

al., 2001), an input data set, { } ]... [ M211 xxxxX == =
M
mm , will be referred to as ( )mX  and 

its corresponding output set, or targets, is 

725 

{ }M
mmy 1=  where mR∈x  and y ∈ R. The data set 

)

726 

(mX  is assumed to be i.i.d. and generated from a d-dimensional data space, , according 

to an unknown distribution, . The error function of any learning machine is denoted as: 

D727 

728 F

( ) ( )( ) ( ) ),()(,, mmm XQXAXQ xx =        (14) 729 

where  is a random test point and x ( ) )( mXA is the set of hypotheses (a learning machine 

that assigns a prediction,  , to each x ) that have been produced by algorithm, 

730 

ˆ y A , given a 

certain concept class over the training set 

731 

( )mX  (Shakhnarovich et al., 2001). The 

conditional true error of a machine trained on 

732 

( )mX  is: 733 
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The methods used for error estimation are as follows: 
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1. Empirical error Err  737 

738 

739 

A machine can be tested with the same data used for training. The empirical error 

(or redistribution error) results in an overoptimistic learning machine: 

( ) ( )( mm XXQErr ,= )740 

741 

742 

743 

744 

745 

746 

747 

748 

. Again, this approach typically underestimates the true error and has 

a negative bias that is large for learning algorithms in which the susceptibility to 

overfitting is high (Shakhnarovich et al., 2001). 

2. Cross-validation and hold out 

Splitting the data into two sets, where the machine is trained on one set and tested 

on the other, to avoid underestimating the true error has a twofold disadvantage: (1) a 

problem of data reduction, and (2) statistical dependence between the two subsets (Blum 

et al. 1999; Shakhnarovich et al., 2001). The application of k-fold cross-validation is used 

to overcome these deficiencies.  In using k-fold cross-validation, the data set is 

partitioned into k mutually disjointed folds (subsets) },...,2,1{ kjS j    ∈∀ .  For each  

the machine is trained on all folds except S . The final error is estimated as: 

jS749 

750 j

∑
=

× =
k

j

m
jkCV XSQ

k
Err

1

)( ),(1  ,       (16) )(m
j XS ⊄751 

752 Leave-one-out-cross-validation error  constitutes the extreme case where 

equals the number of training data sets

mCVErr ×

k ( )mX . Kohavi (1995) claimed that  

suffers from high variance estimates owing to the learning algorithm’s instability under 

small perturbations in data. 

mCVErr ×753 

754 

755 

756 3. Bootstrap error estimation 
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Ordinary bootstrap estimator. This estimator is also called “naïve”. The algorithm is 

trained on

757 

B  set of bootstrap samples ( ) , m
bX Bb ,,1L= , and tested on the original data 

set 

758 

( )mX  (Efron, 1992). The error, therefore, is calculated as: 759 

( ) ( )(∑ =
=

B

b
m

b
m

BS XXQ )
B

Err
1

,1        (17) 760 

761 

762 

Intuitively, one should expect  to be biased downward (Shakhnarovich et al., 2001).  BSErr

Leave-one-out bootstrap. The learning machine quality can be evaluated using a 

number, B , of bootstrap samples ( )im
bX −  that are drawn from the empirical distribution 

with the i -th sample, , removed for testing (Efron and Tibshirani, 1997). The resulting 

error is:  

763 
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       (18) 

Intuitively, as the number of samples increase, the error tends to decrease and thus 

upward bias is likely to occur.  

Hybrid bootstrap and 0.632+. An estimator that minimizes the upward bias of ( )1
BSErr  is 

given by: 

769 

770 

( ) ( )ErrErrErr BSh λλλ −+= 11         (19) 771 

where λ is a mixing parameter that is intended to minimize the bias. Davison and 

Hinkley (1998) reported that 

772 

632.0=λ is the most favorable value and it is used to trade 

off between downward and upward bias. The probability that a test point will be 

included in the training bootstrap set 

773 

774 ix

( )m
bX  is: 775 
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bi   (20) 776 
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The 0.632+ estimator. This is a sophisticated estimator that accounts for the amount of 

overfitting and adjusts 

777 

λ accordingly. The relative overfitting rate, R̂ , is derived as 778 

( ) ErrErrErrR BS −−= γ̂ˆ 1 , where γ̂  is the “no information error rate” which is the error 

rate of the learning machine when the data convey no information.  It is given by: 

779 

780 

( , )781 ∑∑
= =

−=
m

i

m

j
ji XyQm

1 1

2 ,ˆ xγ m)( . For the no overfitting machine, .  The highest 

possible overfitting corresponds to 

0=R̂

1ˆ =R . The 0.632+ estimator is obtained as: 782 

( )( )
R

RErrErrErrErr BS ˆ368.1

ˆ632.368.1
632.632.

−
××

−+=+    (21) 783 

where ErrErrErr BS )632.01(632.0 1
632. −+= . For detail about these statistics, interested 

readers are referred to Shakhnarovich et al. (2001) and Efron and Tibshirani (1993). 
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785 
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Table 1. Key statistics for the prediction efficiency of the four learning machines in the 
training and testing phases (mean of the 56 receptors).  

ANN SVM RVM LWPR Statistics 
Training Testing Training Testing Training Testing Training Testing 

Correlation coefficient 0.987 0.967 0.984 0.974 0.983 0.973 0.983 0.969 
Coefficient of efficiency 0.974 0.933 0.966 0.948 0.966 0.946 0.966 0.911 
Bias 0.000 0.021 -0.026 -0.004 0.000 0.015 0.000 -0.010 
RMSE 0.131 0.192 0.143 0.185 0.141 0.183 0.141 0.229 
Mean absolute error  0.085 0.131 0.074 0.115 0.095 0.128 0.095 0.172 
Index of agreement 0.993 0.982 0.992 0.986 0.991 0.985 0.991 0.975 
 1017 
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Table 2. Different generalization performance measures for the four learning machines 
(data scaled linearly to [0, 1]).  

Generalization Error (RMSE) ANN SVM RVM LWPR 
Empirical error 0.0214 0.0210 0.0206 0.0216 
5-fold cross-validation  0.0237 0.0267 0.0248 0.0244 
10-fold cross-validation  0.0234 0.0262 0.0261 0.0250 
Leave-one-out error  0.0231 0.0245 0.0269 0.0252 
Ordinary bootstrap estimator 0.0222 0.0258 0.0242 0.0261 
Leave-one-out bootstrap 0.0221 0.0256 0.0247 0.0259 
Hybrid bootstrap and 0.632+ 0.0218 0.0239 0.0232 0.0243 
0.632 bootstrap 0.0218 0.0239 0.0232 0.0244 
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Figure 1. Schematic of the integrated modeling framework for simulating nitrate 
concentration in groundwater. 
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Figure 2. Physical model domain, consisting of the extended Sumas-Blaine aquifer and 
land use classes. 
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1045 Figure 3. The spatial distribution of the nitrate receptors in the study area. 
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Figure 4. Variability of the 5-fold cross-validation RMSE with the number of data points 
for the four learning machines (data scaled linearly to [0, 1]). 
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b. a. 

d. c. 

Figure 5. Scatterplot of the observed versus predicted nitrate concentrations at the 19th 
receptor for (a) ANN, (b) SVM, (c) RVM, and (d) LWPR. 
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Figure 6. Scatterplot of the observed versus predicted nitrate concentrations at the 34th 
receptor for (a) ANN, (b) SVM, (c) RVM, and (d) LWPR. 
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Figure 7. RMSE for the testing efficiency of the four learning machines for the 56 
receptors. 
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Figure 8. Coefficients of efficiency for the testing efficiency of the four learning 
machines for the 56 receptors. 
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