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A Fifth-order Multiperturbation Derivation of the Energy
Coefficients of Polyatomic Molecules
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ABSTRACT

A multiperturbation theory has been developed for molecular systems.

In the present paper we extend this theory to fifth order in the
energy. The "bare-nucleus" hydrogenic function is chosen as the zero-order
wave function rather than the more customary hartree-fock function. With
this choice the multiperturbation wave functions are independent of the
nuclear charges and of the total number of nuclear centers and electrons for
the molecule, and are thus completely transferable to other systems. Making
the simplest possible
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choice, we describe an n-electron,m-center polyatomic molecule as n
"hydrogenic” electrons on a single center perturbed by electron-electron and
electron-nucleus coulomb interactions. With this choice of zero-order
Hamiltonian (Hg) the first-order wave function for any polyatomic melecule
will consist entirely of two-electron, one-center and one-electron.two-center
first-order wave functions. These are exactly transferable from calculations

on He-like and “;—Iike systems. To calculate the first-order and second-

order correction for the wave function of any polyatomic molecule, we need
the first-order and second-order correction for a two-electron atomic wave
function, the first-order and second-order correction for a one-electron
diatomic molecular wave function and some additional mixed second-order
corrections. The wave functions necessary will be two-center, one-electron at
most.

The second-order wave function for a polyatomic molecule contains
additional contributions which cannot be obtained from the simple
subsystems, but represent multiple perturbation contributions which are two-
electron diatomic, and one-electron triatomic in character.

The expressions for the multiperturbation energy-expansion
coefficients through fifth order are derived.
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I Introduction

In general, the nth-order wave function or energy for a polyatomic
molecule decouples into a sum over all contributions from p-electron, g-
center subsystems (ptq=n+2) that are contained within the molecule of
interest. Hence, in nth-order, the most complex contributions to the wave
function (or energy) will involve (n+1)-electron, one-center or one-electron,
{n+1)-center contributions.

The fact that the multiperturbation expansion coefficents are
independent of the nuclear charges and of the total electronic configuration
of the system assures that results obtained for smaller subsystems are exactly
transferable into larger systems of interest.(3,5)

In 1971 Chisholm and Lodge carried out a study of two-electron
diatomic molecules through second order in the energy.(1,2,3) In his
paper(4), Sanders has derived the energy coefficients through fourth-order
correction. The two-electron polyatomic molecule has been studied through
second order in the energy.(6) The third and fourth-order corrections in the
energy have been calculated for homonuclear and heteronuclear diatomic
and polyatomic molecules.(7)

The complete first-order wave function of any molecule can be
constructed from the first-order atomic (He-like) pair functions of all two-
electron configurations present in the zero-order wave function, together

with the first-order, single-electron diatomic (H;-like) wave functions of all

the orbitals in the zero-order wave function. The second-order correction to
the enegry then consists entirely of one-center three-electron, two-center
two- electron, and three-center one-electron coniributions, no matter how
complex the molecule. Continuing to higher-order, the maximum degree of
complexity of the calculation introducing either an additional electron or an
additional center to the complexity of the expansion coefficients.
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In this paper a fifth-order multiperturbation derivation of the energy
coefficients of polyatomic molecules is presented ‘~ analogy to a similar
approach for atoms.

IL. Multiperturbation Theory

Consider a system described by the time-independent. non-

relativistic Schrodinger eguation

Hy Evy: (D

where ¥ and E are the eigenfunction and eigenvalue of the Hamiltontan H.

For a polyatomic molecule the total Hamiltonian is given by
H=H,+2,4,H": (2)

where. in charge-scaled atomic units. Hy (s a sum of one-electron
(hydrogenic) Homiltonians for an N-electron system:

_WN =SSN _tlon_ 1
HO_Zi=lh"“)_Zi=|( 2v\ ) )

Here YAT are distinct perturbation functions and i: are the perturbation

parameters. This choice of zero-order Hamiltonian ailows the perturbation
expansion coefficients to be independent of the nuclear charges and
completely transferable from one system to another. It also reducestoa
minimum the number of centers that can appear at any particular order.

The total wave function and the total energy can be represented by a
series expansion(l) :



76

An-Najah J. Res, Vol. _4, No.10 (1996} Moha'd Abu-Ja'far
vy, o n AARAY .. LA (4)
and
E-Y,  MAFAY .l e by (5)

\I-’:i“ and Eg'?n being of nth order in the perturbation “\a and mth order in

the perturbation ‘ﬂf. By substituting Eqs (2). (4) and (5), into (1), we obtain
the multiperturbation differential equations as shown in Appendix (A).

IIL Energy Coefficients

The expressions for the energy coefficients can be derived in the
usual manner(Z) frothe multiperturbation differential equations [Appendix
(A)]. The expressions for all energy coefficients complete through third
order are shown in Appendix (B). The fourth and fifth-order energy
coefficients are presented below :
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These results assure that at nth order the wave functions and energy
coefficients cannot involve more than p electrons and q centers at a time
where pt+q=n+2. This in turn means that at most n+1 electrons can be
correlated at nth order while the greatest number of centers involved in an
nth order coefficient is also n+1.

1Vv. Discussion

To calculate the second-order correction in the energy we need the

first-order correction in the wave function q)f. The wave function (Dfis
obtained by the variational perturbation method, yielding an upper bound to

the corresponding energy g:

e2s<01 1 G, 1 $7>+2<47 1 G, | W,y>.

Substitution of q):l into Egn. (1) through (6) in Appendix (B) yields
estimates of all energy coefficients complete through third order.

The second-order wave function can be obtained using the

variational method, yielding an upper bound to the corresponding energy g:
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Optimization of the second-order wave functicn ((Df:) and the mixed
wave function ((fo}) gives an upper bound to the gfﬂ and g:f. respectively.

as well as estimates of the energy coefficients gf\ﬂ. g:f: g:f gf. g:‘ﬁ\.

uff
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In the multiperturbation theory . the lowest-order wave functions for
a polyatomic molecule are not only independent of the nuclear charges, but
are also indpendent of the total number of nuclear centers and electrons for
the molecule. Thus the complexity of the problem can be restricted to a
manageable level determined by the highest order of the calculation. With
the present choice of HQ, the first-order wave function for any polyatomic
molecule is described completely in terms of two-electron, one-center
(atomic) and one-electron, two-center (molecular) first-order wave functions.

These are separately obtained from calculations on He-like and “;-Iike
systems.

It is found that the perturbation energy summed through second
order generally yields results comparable in accuracy to Hartree-Fock
values;!7-8) while the third and fourth-order values are comparable in
accuracy to variational calculations of moderate complexity.(? In order to
improve the calculations, we have derived the fifth-order correction in the
energy for polyatomic molecules.
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Appendix (A)

Expressions for the multiperturbation differential equations are

presented below :
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WhereGU=Ho~s°andG‘,’=H*,'—z‘.’
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Appendix (B)

The third-order energy coefficients are presented below :
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