
Distributed Synthesis of Real-Time Computer Systems

Ahmad Abualsamid Raed Alqadi Parameswaran Ramanathan

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Madison, WI 53706-1691.
parmesh@ece.wisc.edu, (608) 263-0557

Abstract
High-level synthesis has become commonplace in

many areas of computing such as VLSI design and
digital signal processing. However, it is just begin-
ning to receive attention in the area of real-time sys-
tems. Given a real-time application and a design
library of components, high-level synthesis involves
three main steps: (i) estimation of processors and re-
sources required to meet the constraints of the appli-
cation, (ii) identifying suitable architectures using the
components from the design library, and (iii) schedul-
ing application tasks on the selected architecture. In
this paper, we focus on the first and the third steps
of this process. Specifically, we identify key issues
in parallelizing these two steps. We then discuss ap-
proaches to deal with these issues and present results
of our distributed implementation. The results of this
implementation on a network of workstations show
that considerable speedup in overall runtimes can be
achieved by using multiple workstations.

1 Introduction
Tasks in a real-time application usually have dead-

line constraints by which they must complete their
execution. Failure to complete a computation within
a task’s deadline may lead to a catastrophe. Examples
of such applications include flight-control systems, life-
support systems, nuclear power-plants and process-
control systems. Due to the severity of the conse-
quences, a distributed computing system is often ded-
icated to the tasks in a real-time application. This
system must be carefully designed to ensure that all
the constraints of the application are satisfied. How-
ever, due to the large number of constraints involved
and due to the numerous design alternatives, design-
ing such a computer system is a very difficult prob-
lem. This problem can be alleviated with the help of
computer-aided synthesis (CAS) tools which facilitate
the search and evaluation of design alternatives. This

The work reported here is supported in part by the National
Science Foundation grant MIP-9213716.

approach has been successful in other areas of comput-
ing such as VLSI design and digital signal processing.
However, the approach is just beginning to receive at-
tention in the area of real-time systems [2, 7, 91.

The main issue in the design of CAS tools is their
runtime complexity. Due to the large search space, the
time required for synthesis may be unacceptably large
for use in “real” applications. To overcome this prob-
lem, we have been developing algorithms/heuristics
which run in a distributed fashion on a network of
workstations and/or parallel computing systems. In
this paper, we describe our techniques for such a dis-
tributed synthesis of computer systems for real-time
applications. We have implemented two key steps in
the synthesis process, namely lower bound analysis
and scheduling, on a network of workstations. The
lower bound analysis step estimates the number of
processors and resources required to meet the con-
straints of the application while the scheduling step
verifies whether the application constraints are sat-
isfied on a candidate architecture. The implementa-
tion is done using the Parallel Virtual Machine (PVM)
message passing system [6]. The results of this imple-
mentation demonstrate that the use of a distributed
system for computer-aided synthesis has a tremendous
potential .

The rest of this paper is organized as follows. Sec-
tion 2 contains an overview of the synthesis process.
Then, Section 3 identifies some of the issues in paral-
lelizing the lower bound analysis step of the synthe-
sis process and then discusses solutions to deal with
them. Section 4 similarly deals with the scheduling
step of the synthesis process. The results of an em-
pirical evaluation of our distributed implementation
are presented in Section 5 . The paper concludes with
Section 6.

2 Overview of the synthesis
tool

The inputs to our synthesis system are a design li-
brary of components, and the mission-critical applica-

154
1080-1812195 $04.00 0 1995 IEEE

mailto:parmesh@ece.wisc.edu

m l - 0 n1=3

D=36 D-30 Do30

P1
C J

Figure 1: An example real-time application.

tion. The output includes a heterogeneous architec-
ture containing components from the design library, a
mapping of the tasks in the application onto the mod-
ules in the architecture, and a schedule for the tasks
and messages in the application. The design library
contains processors, resources, and interconnects from
which the distributed system is to be synthesized.
Components in the design library are characterized
by attributes such as performance and cost. The ap-
plication is specified as a set of cooperating tasks and
the constraints that each task must satisfy, e.g., a task
may have deadline constraints, resource requirements,
precedence relations, computational needs, etc. The
objective is to identify the lowest cost computer sys-
tem (constructed using the components in the design
library) which satisfies all the constraints of the appli-
cation.

For example, Figure 1 shows a simple application
with 10 non-preemptive tasks. The tasks are num-
bered from 1 to 10. Each task is annotated with its
computation time and its resource requirements (e.g.,
task 10 requires 6 units of computation on processor
of type P1 and resource r l) . Tasks 1, 2, 3, and 7 are
also annotated with their release times. Tasks 8-10
are annotated with their deadlines. The precedence
relationships between the tasks is shown by a directed
arrow (e.g., tasks 1 and 2 must complete their exe-
cution before task 5 can begin its execution). After a
task completes its execution it sends information to its
successors. A task must receive this information from
its predecessors before it can begin its execution. If
a task and its successor are assigned t80 two different
processors, then the information is sent in the form
of a message. The size of the message is indicated
alongside the directed arrow.

For this application, the design library must con-
tain several copies of a processor of type P1 and a
resource of type r l . The synthesis system will select
appropriate number of copies of processor P1 and re-
source r l and determine an interconnection struct,ure

between them. In this paper, we assume that the se-
lected processors are interconnected through a set of
shared buses. Each processor can send or receive on
all the buses in the system. Furthermore, we assume
that there is a separate interconnection between the
processors and the resources. The design of that com-
munication network is not considered in this paper,
i.e., we assume that the communication between a pro-
cessor and a resource takes place instantaneously and
there is no need to schedule those communications.

Given a real-time application and a design library
of resources, the key steps in the synthesis process are:

1. - Lower Bound Analysis: Compute a lower bound
on the number of processors, resources, and inter-
connects required to meet the constraints of the
application.

2. Module Selection:

(EL) Choose processors and resources from the
design library for inclusion in the architec-
ture.

(b) Identify a suitable interconnection structure
between the selected components.

3. Scheduling: Evaluate the architecture identified
in Step 2 by scheduling the application tasks and
the resulting messages on the architecture.

--

4. Terminate if a satisfactory solution is found. Oth-
ervvise, go to Step 2 and improve the architecture
based on the results from Step 3.

The lower bound analysis step is considerably longer
than the other steps, thus it is essential to parallelize
it. Steps 2 and 3 will be invoked many times dur-
ing the synthesis process, thus they also need to be
parallelized.

3 Distributed Lower Bound
Analysis

Fernetndez and Bussell [4] did one of the earliest
work on determining a lower bound for the number
of proc'essors required to schedule a given applica-
tion witshin its critical time. They considered applica-
tions in which the tasks have integer execution times
and precedence relationships, but, zero communica-
tion time with other tasks. Al-Mohummed [l] ex-
tended the algorithm in [4] to applications in which
the communication requirements between the tasks
is non-zero. However, Al-Mohummed's work did not
deal wit.h many of the constraints commonly found in
real-time applications. Just recently, Alqadi and Ra-
manathan extended the algorithm in [l] to deal with

155

EST=O EST-0 E S T 4

Figure 2: An example application for illustration of
EST analysis.

release time, deadline, and resource constraints [3].
The implementation in this paper is based on the the-
oretical results in [3]. However, several issues had to
be resolved in converting the results to an efficient
implementation. Before describing these issues, we
briefly review the results from [3].

3.1 Informal Overview of Lower
Bound Analysis

The lower bound analysis in [3] has four basic steps:

EST Analysis: Compute the earliest start time
(EST) of each ta.sk in the application.

LCT Analysis: Compute the latest completion
time (LCT) of each task in the application.

Partitioning: Partition the application tasks into
a sequence of smaller subsets such that each sub-
set can be treated independently with respect to
lower bound analysis.

Lower Bound Computation: Compute a lower
bound on the number of units of each proces-
sor/resource required by the application.

EST Analysis. The EST analysis starts with tasks
that have no predecessors and recursively proceeds to-
wards tasks which have no successors. It evaluates the
EST of a task only after comput,ing the EST of all its
predecessors. If there are no communication require-
ments, then the evaluation of the EST of a task is
simple, given the EST of its predecessors. However, if
there are communication requirements, then the eval-
uation of EST is more involved. The basic idea of
this analysis is best illustra.ted by a simple exa.mple.
Consider the evaluation of the EST of task T4 in Fig-
ure 2. In this example, T4 has trliree predecessors, T1,
T2, and T3. The computation times of T1, T2, and
T 3 are 3 units each. The comput.a.tion time of T4 is 5
units. Furthermore, after completion of TI, T 2 , and
T3, the time required to send messages to T4 (if they
are assigned to a different processor) are 1, 2 , and 3

units, respectively. Also, suppose that the EST of T1,
T2, and T 3 are 0.

If T4 is assigned to a processor different from those
of T1, T2, and T3, then T4 cannot start before time 6
since it must receive a message from T3. However, if
T 3 and T4 are assigned to the same processor which
is different from that of T1 and T2, then T 4 cannot
start earlier than 5. This is because there is no need
to send a message from T 3 to T 4 and T4 must wait
for a message from T2. Now, if T2, T3, and T 4 are
assigned together and T1 is a t a different processor,
then T 4 cannot start earlier than time 6, because T2
and T 3 must complete their execution before T4 can
begin. That is, the earliest start time of T 4 depends
on which combination of its predecessors are assigned
together with T4. Therefore, to determine the EST
of T4, one must find the best subset of its predecessor
to be assigned to the same processor as T4. An effi-
cient algorithm to identify such subsets are described
in [3]. Using this algorithm, the EST of all tasks in
an application can be found in O (E) time where E
is the total number of direct precedence relationships
between the tasks.
L C T Analysis. The algorithm for LCT analysis is
similar to that of EST analysis. The LCT of a task is
evaluated only after the LCTs of its successors. As in
the case of EST analysis, the LCT of all tasks in the
application can be found using an O (E) algorithm.
Part i t ioning. Using the EST and LCT of the tasks,
the third step partitions the application with respect
to each resource. The partitioning is done to reduce
the runtime complexity of the next step. Basically, let
r be a resource used by the application and let ST,. be
the set of tasks which require resource r . ST,. is then
partitioned into subsets Prl, Pr2, . . . , P,., such that
the LCT of every task in P,.l is less than or equal to
the EST of every task in any Prk, for all I , k , k > 1.
It is then proved in [3] that each of these partitions
can be treated independently while computing a lower
bound for resource r .
Lower Bound Computation. Consider a partition
P,., and let EST, be the smallest EST among all tasks
in P,./. Likewise, let LCTl be the largest LCT among
all tasks in P,.]. Now consider an interval [t l , t z] such
that EST(5 tl < t 2 5 LCT,. Let * , . (~ , t l , t 2) be the
minimum computation time which must be completed
by task 7 in the interval [t l , t 2] on resource T in order
for all tasks to complete by their respective LCTs.
Let ST, be the set of tasks which require resource
T . Then @,.(tl, t z) = ETEST, Q , . (~ , t ~ , t z) is the total
ininiinum computation time which must be completed
on resource T in [t l , t z] . Therefore, in order to ensure
t,liat all tasks complete by their respective LCTs, we

156

need at least ['~~~'~~)1 copies of resource r . That

is,

(3.1)
The correctness of the above equation is proved in
[3]. In this equation, the outer maximum is over all
partitions and for each partition Prl, the inner max-
imum is taken over all possible intervals [tl,t2] E
[EST,,LCTi].

3.2 Implementation Issues
There are two issues which have to be resolved in

converting the theoretical results in the previous sec-
tion to an efficient distributed implementation. These
two issues are: (i) selection of intervals, and (ii) the
parallelism approach. The first issue arises because
for each partition the maximum operation is to be
taken over uncountably many intervals. As a result, a
direct implementation of Equation 3.1 is computation-
ally intractable. On the other hand, if the maximum
operation is taken over fewer intervals, then the re-
sulting lower bound may be smaller (hence, weaker)
than the lower bound as given by Equation 3.1. The
challenge is to select a suitable set of intervals such
that the resulting bound in reasonably close to the
bound given by Equation 3.1 while being computa-
tionally tractable.

The second issue arises because the way in which the
workload is distributed affects the runtime efficiency
of the distributed implementation. In the following
two subsections we discuss these two issues in more
detail and present our approach for tackling them.

3.2.1 Selection of intervals
If all the computation and the communication times

in the application are integers, then the bound in
Equation 3.1 can be computed by considering all pos-
sible integer intervals [a, b] C [0, D,,,], where D,,, is
the largest deadline in the application. This idea was
suggested by Fernandez and Bussell [4], although their
work did not deal with many of the constraints found
in real-time applications. Since there are O(Dk,,)
such intervals and since D,,, is often quite large, the
runtime complexity of this approach may be unaccept,-
able for many real-time applications.

An alternate approach is to only consider all in-
tervals of the form [e, , I ,] , where T is a task in the
application and e, (/,) is the EST (LCT) of task T .

This approach was suggested in [l], The advantage is
that there are exactly N intervals, where N is the to-
tal number of tasks in the application. However, our

experience indicates that using only N intervals gives
a weak lower bound.

Our (approach is to choose a set of random intervals
within each partition. For each partition, the total
number of intervals considered is equal to RSN, where
R is a design parameter and N is the number of tasks
in the application. In our implementation, R = 40.
3.2.2 Parallelism Issue

There are two possible ways of parallelizing the
lower bound analysis, Application Parallel and Com-
putation Parallel. In the discussion below, we describe
these two ways and argue that Computation Parallel
approach is better than the Application Parallel ap-
proach for lower bound analysis.
Application Parallel Approach. In this approach,
the computational load is distributed among the work-
stations by partitioning the application and assigning
a subset of tasks to each workstation. Each work-
station then performs all computations in the lower
bound ,analysis for the set of tasks that has been as-
signed to it. The workload is distributed because each
workstattion has to deal with only a subset of the tasks
in the atpplication.

However, due to the nature of the computations in
the lower bound analysis, each workstation will have
to comimunicate extensively with other workstations
to perform its computation. For example, consider the
computations in the EST analysis. To compute the
EST of a task, the corresponding workstation needs
the EST of the predecessors of the task. If a prede-
cessor of the task is assigned to a different worksta-
tion, then its EST value must be obtained from the
other workstation, i.e., a communication overhead is
incurred in the EST analysis. A similar type of com-
munication overhead is necessary for the LCT analy-
sis.

There is also a need for communication in the final
lower bound computation step, and when performing
the mair operations.
Computation Parallel Approach. In this ap-
proach, each workstation has the entire application.
However, for each task, it performs only part of the
computations needed in the lower bound analysis. In
particular, each workstation independently computes
the EST and the LCT of all tasks in the applica-
tion. E,sch workstation then independently identifies
the partitions for each resource. The workstations
then independently choose to work on mutually dis-
joint set of intervals, i.e., the workload here is dis-
tributedl by dividing the set of intervals among the
workst,ations. Each workstat,ion independently com-
putes a lower bound for each resource based on its set
of intervals. The workstations perform a reduction

157

operation to compute an overall lower bound for each
resource.

The main disadvantage of this approach is that
some of the computations are redundantly performed
by all workstations. The advantage, of course, is that
there is no need to convey this value to other worksta-
tions. The only communication occurs at the end; a
maximum operation on one value for every resource.
Since communication is very expensive in a network of
workstations, the reduction in communication is more
significant than the increase in computation. Thus
this approach works better than the Application Par-
allel approach.

4 Distributed Static Schedul-
ing

Due to its importance, the scheduling problem
has received considerable attention from researchers
[8, 11, 121. For the kind of applications considered
here, the problem is known to be NP-complete, but
several good heuristics have been proposed [5, 111.
However, to the best of our knowledge, none of the ex-
isting work have addressed the problem of distributing
a static scheduler to reduce its runtime. Existing work
on distributed schedulers usually focus on inserting a
dynamically arriving task in the schedule of tasks a.1-
ready present in the system [lo]. The incoming tasks
are typically assumed to be independent of the tasks
already present in the system. The main issue is to
determine whether the constra.int,s of a.n incoming task
can be met without jeopardizing the promises made to
other tasks.

In contrast, in this paper, we discuss an approach
for distributing a static scheduler. A static scheduler
has all the necessary information a.bout the tasks it has
to schedule. However, the number of tasks is typically
fairly large and the tasks are usually not independent
of each other. The main issue here is how to distribute
and coordinate the computations in a scheduler in or-
der to ensure that all the constraints of the application
are satisfied.

As in the case of lower bound analysis, there are two
ways of distributing the scheduling workload a.inong a.
network of workstations. One approa.ch is to partition
the set, of processors and resoiirces required by the
application and assign a. subset t,o ea.ch workstmatmion.
The workstation is then responsible for scheduling on
its subset of processors and resources. Each worksta-
tion may have to perform some computation for every
task in the applica.tion. An alt,erna.te approa.ch is to
partition the application ta.sks a i d a,ssign a subset of
ta.sks to workstation. A workst,a.t.ion is then re-
sponsible for scheduling only tshe ta.sks in it.s assigned

subset. However, each workstation may have to sched-
ule on all the processors and resources required by the
application.

The two approaches differ in the nature and the
amount of interaction needed between the worksta-
tions. In the first approach, when scheduling a task,
the workstations need to know where and when the
task's predecessors have been scheduled. To obtain
this information, a communication overhead is in-
curred after scheduling each task in the application.
This approach has significant communication over-
head and thus lower runtime efficiency. In contrast, as
shown later in this section, the amount of communica-
tion between the workstations in the second approach
can be minimal if the application is partitioned care-
fully. Consequently, the second approach has better
runtimes. We pursue this approach in this paper. We
first present the partitioning scheme and then give an
overview of the scheduler used in our implementation.

4.1 Partitioning Scheme
Let I? be the set of tasks in the application and let

m be the number of worksta.tions participating in the
distributed scheduler. Then, the objective of the par-
titioning stra.tegy is to identify m disjoint subsets rl,
. . . , rm such that: (i) UElra = r , and (ii) the LCT
of all tasks in I?i is less than or equal to the EST of
all tasks in I'j , for all i, j, j > i. The rationale for this
objective is that each of these sets can be scheduled
independently by a worksta.tion without any commu-
nication overhead. This is because the time window
in which the tasks in l 7 d must execute is disjoint from
the time window for the tasks in rj, j # i .

However, it may not always be possible to partition
I? in this fah ion without some additional constraints.
To ma.ke this possible, the partitioning strategy im-
poses a.dditiona1 release time and/or deadlines con-
straints on some tasks. Theoretically, these additional
constraints may make the application impossible to
schedule. However, our experience indicates that this
is not the case (see Section 5). The question then
is how do we select the additional constmints to be
imposed on the application?

Our a.pproa,ch for determining the additional con-
straints is very simple. This simplicity is of a t most
iinport,aiice because this partitioning st,ep is an over-
1iea.d which is not present in a non-distributed sched-
uler a.nd this overhead affects the runtime efficiency
of the distributed implementation. Our approach is
to first partition the interval [0, D,,,] into m equal
subint<erva.ls, where D,,, is the largest hard deadline
in t,he qiplication. For tasks whose EST and LCT lie
wit,liin t.he sa.me subinterval, we do not impose a,ny ad-
ditional constraint,s. For other tasks, we either add a

158

'Y

(a) Periodic jobs (b) Invocations in a superperiod

Figure 3: An example application.

release time greater than the task's EST or a deadline
less than its LCT so that its modified EST and LCT
lie within one subinterval. Note that, because of the
way in which the constraint is generated, any feasible
schedule of the modified application is also a feasi-
ble schedule of the application. However, as stated
earlier, it is theoretically possible for the modified ap-
plication to be infeasible even though the applica.tion
is feasible. If this happens, the distributed scheduler
will not be able to identify a feasible schedule whereas
a non-distributed scheduler may have succeeded.

To illustrate this approach consider the simple ap-
plication in Figure 3(a). The application has two pe-
riodic jobs with periods 4 and 10, respectively. The
first job is comprised of three non-preemptive tasks
(namely A, B, and C) whereas the second periodic
job has only one non-preemptive task (namely D). The
precedence relations between the tasks in the first job
are shown as directed arrows. The execution time of
the tasks is shown as weights nea.r t8he corresponding
vertices. For simplicity, the communica.tion times be-
tween the tasks are assumed to be zero. Figure 3(b)
shows the invocations of these two jobs in a super-
period (i.e., least common multiple of the periods).
The scheduler must find a feasible schedule for all the
tasks in this superperiod and repeat the schedule for
the subsequent superperiods. The numbers enclosed
in [] are the EST and the LCT of t8he corresponding
task.

Now suppose that this application is to be sched-
uled using two workstations. Then, we must, pa.rtition
the tasks in Figure 3(b) int.0 two groups and assign
them to the two workstations. To identify this parti-
tion, our approach divides t,he [0,20] into two subin-
tervals [0, lo] and [lo, 201. For all tasks whose EST
and LCT lie within one of these intervals no addi-
tional constraints are imposed. In t,liis example, this

condition is true for all tasks except task 3D. The
EST of task 3D lies in [0,10] whereas its LCT lies in
[lo, 20:l. We, therefore, need to imp'ose an additional
constraint on this task. Since the subinterval bound-
ary (i.e., 10) is midway between the EST and the LCT
of this task, we can add either a release time or a
deadline constraint. For example, we can impose a
deadline of 10 on this task and thus make its modified
LCT equal to 10. With this one additional constraint,
tasks].A, lB , lC , lD , 2D, and 3D will belong to a
partition while the remaining tasks will belong to the
other partition. One workstation will independently
schedule the tasks in the first partition in the interval
[0,10] while the other workstation will schedule the
remaining tasks in the interval [10,20]. Since these
interva.ls are disjoint, no communication is required
between these workstations after they have identified
their respective partitions. In fact, they can each use
any appropriate scheduling heuristic to schedule their
partition on the processors and resources identified a t
the end of the lower bound analysis step.

Described below is an informal overview of the
scheduler we used in obtaining results presented in
Section 5.
4.2 Overview of the scheduler

The ,scheduler is provided with the number of copies
of each resource needed by the application. It is re-
sponsible for assigning the tasks to the resources and
then determining a start time for each task such that
all constraints of the application are satisfied.

The scheduler starts by ordering the tasks in the
increaaing order of their latest start times*. Initially,
the latest start times are as obtained during the lower
bound ana,lysis. The tasks are considered for schedul-
ing one at a time.

A task is scheduled on the processor on which it
can coimplete the earliest. To identify this earliest
completion time, the scheduler first picks the least uti-
lized copy of each required resource. It then considers
all possible processor assignments for the task. Each
possible processor assignment generates a different set
of pred'ecessor messa.ges that have to be scheduled on
the communication network. This is because only pre-
decessors which are assigned to a different processor
need to send a message through the communication
network. For ea,ch possible assignment, the scheduler
first determines the ea.rliest completion time of all the
predecessor messages of the task under consideration.
The least scheduhble time (i.e., when the processor
and the resources under consideration are free to exe-
cute the ta,sk) after all predecessor messages have ar-

'The lat.est start time of a task is its LCT minus its compu-
t,ation t.iime.

rived plus the corresponding execution time for the
task is the earliest complet,ion time of the task on a
given processor. The task is scheduled on the proces-
sor in which it has the minimum earliest completion
time. After a task is scheduled, the ready list is up-
dated to possibly include the immediate successors of
the just scheduled task.

The scheduler continues in this fashion until all
tasks have been tentatively scheduled. If some tasks
do not meet their deadlines, then the whole process is
repeated after recomputing the latest start time of all
tasks based on the assignment just generated. Note
that, a new assignment results in a different communi-
cation pattern for some tasks. Consequently, there is
a change in the latest completion time of some tasks,
which in turn, changes the priority order among the
tasks in the next iteration. The scheduler terminates
either when a feasible schedule is identified or when a
pre-specified iteration limit is exceeded.

5 Evaluation
In this section, we present results of an empirical

evaluation of the distributed synthesis tools. The
goal of this evaluation is to demonstrate that mul-
tiple workstations can be effectively used to synthe-
size computer systems for real-time applications. To
demonstrate this fact, we show tshat: (i) there is a sig-
nificant reduction in the overall runtime as a result
of using multiple workstations, and (ii) the likelihood
of a distributed scheduler being able to find a feasible
schedule is comparable to that of a sequential sched-
uler. It is necessary to demonstrate this second aspect
because in distributing the scheduler, additional con-
straints are imposed on the applicat,ion. We need to
demonstrate that these additional constraints do not
have much impact on the likelihood of finding a feasi-
ble schedule.

The evaluation is carried out by running the lower
bound analysis and the scheduler on several synthetic
applications. Each synthetic application is comprised
of a number of periodic jobs with different periods, re-
lease time and deadline constraints. The periodic jobs
have between 5-15 non-preemptive tasks with prece-
dence, resource, and communication constraints. The
lower bound and scheduling analysis are performed by
considering all the task activations in the interval [0,
LCM], where LCM is the least common multiple of
the periods of the jobs in that application.

Table 1 shows the summary of the results obtained
from our implementation on a network of Hewlett
Packard workstations model H P 735. Each worksta-
tion has 80 MBytes of memory and runs HPUX 9.0 op-
erating system. The workstations are interconnected

Table 1: Summary of the results from our distributed
implementation.

Appln.
(Size)

G 1 (106)
G2 (503)

G3 (88)
G4 (214)
G5 (115)

G6 (49)
G7 (61)

G8 (540)
G9 (922)
G10 (71)

G11 (106)
G12 (186)

G13 (91)
G14 (1220)

G15 (67)
G16 (324)
G17 (277)
G18 (306)

G19 (65)
G20 (215)
G21 (694)
G22 (150)
G23 (315)
G24 (142)

G25 (1109)
G26 (839)

G27 (2933)

Lower
Bounds

(4 1 1 1)
(5 3 3 3)
(4 1 1 1)
(4 2 2 2)
(2 1 1 1)
(2 1 1 1)
(2 1 1 1)
(5 3 2 3)
(4 2 2 3)
(3 1 1 1)
(4 1 1 1)
(5 2 2 2)
(2 1 1 1)
(4 3 2 2)
(2 1 1 1)
(3 2 2 2)
(2 2 1 2)
(2 1 1 1)
(1 1 1 1)
(4 2 2 2)
(4 2 2 3)
(4 2 2 2)
(3 2 1 2)
(3 1 2 1)
(3 2 1 1)
(2 1 2 1)
(2 1 1 1)

Timing (sea
1 wk

6.6(S)
142.0(S)

7.7(F)
26.5(S)

8.9(S)
2.1(S)
4.1(F)

159.6(s)
477.8(S)

4.1(S)
9.4(F)

21.3(S)

909.6(S)
1.3(S)

18.4(S)
14.0(S)
19.7(F)

1.3(F)

83.1(S)

18.7(S)
4.2(S)

198.8(s)
113.0(s)

1594.6(F)

5.4(S)

9.1(S)

5.4(S)

2 wk

83.9(F)
4.0(S)

15.8(S)
6.0(S)
1.7(S)
2.5(F)

254.1(s)
2.6(S)

13.0(S)

477.0(S)

4.7(S)

90.9(S)

5.3(S)

3.5(S)

0.9(S)
10.2(S)
7.9(S)

0.8(S)
5.3(S)

43.7(S)

11.2(F)

3.2(S)
10.4(S)
2.7(S)

11 0.3(S)
62.7(S)

858.9(F)

using a Fiber Data Distributed Interface (FDDI) net-
work. The distributed implementations are based on
the Parallel Virtual Machine (PVM) message passing
system version 3 .3 .5 . In this table, the first column
contains the number of task instances in the interval
[0, LCM] of the corresponding a.pplication. The sec-
ond column contains the results of the lower bound
analysis; it shows the lower bound on the number
of copies of the processor and resources Rl,R2, and
R3, respectively. The final three columns show the
overall runtimes in seconds for executions with 1, 2 ,
and 4 worksta.tions, respectively. In these results, the
scheduler is given two additional copies of the proces-
sor than the lower bound given in the second column.
Alongside the runtimes, labels S and F are included
to indicate whether the scheduler Succeeded or Failed
in finding a feasible schedule for the application.

Figure 4 shows the fraction of applications which
are successfully scheduled when 1, 2, 3 , and 4 work-
stations are used. The four curves in this figure corre-

4 wk
3.2(S)

47.0(F)
2.9(F)

lO.l(S)
4.5(S)
1.3(F)
1.8(F)

50.4(S)
137.7(S)

3.4(F)
8.3(S)
2.9(S)

241.2(S)
0.7(S)
6.2(S)

7.1(F)
0.6(F)
3.3(F)

24.2(S)
2.2(F)
6.2(S)

66.1(S)

51 0.2(F)

2.0(S)

4.9(S)

1.9(S)

37.5(S)

160

100.0 I

t m l ' I ' ' I ' ' ' I

A

0.0
2 3

Number of workstations

Figure 4: % successfully scheduled applications versus
number of workstations.

spond to the number of processors given to the sched-
uler after the lower bound analysis. For insta.nce, for
the curve labeled Proc-LB, the number of processors
given to the scheduler is equal to the value computed
from the lower bound analysis. Likewise, for the curve
labeled Proc_LB+2, the number of processors given
to the scheduler is two more tha.n the value computed
from the lower bound ana.lysis. Observe that, the per-
centage of success does not vary significa,ntly with the
number of workstations used. This means that, the
additional constra.ints imposed on some tasks to re-
duce the communication time in the distributed im-
plementation (see Section 4) does not significantly af-
fect the likelihood of successfully scheduling an appli-
cation. Also note that, the percenhge of successfully
scheduled applications improves in some cases when
multiple workstations are used. This is due to the
fact the scheduler is based on heuristics.

Figures 5, 6, 7 show the various speedups a.chieved
as a result of using multiple workstations for few se-
lected applications. Specifically, Figure 5 shows the
overall speedup whereas Figures 6 and 7 show the
speedups achieved in the lower bound analysis and
the scheduling steps, respectively.

In these figures, the subfigure (a) shows the results
only for those applications for which a feasible sched-
ule was found in each of the four executions (i.e., ex-
ecutions with 1, 2, 3, and 4 workstations). Similarly,
the subfigure (b) shows the results only for those a.ppli-
cations in which no feasible schedule was found in any
of the four executions. Also, for the results in these fig-
ures, the scheduler is given t,wo more processors than
the value computed from lower bound analysis.

It follows from Figure 5 , tha.t considera.ble speedups
are achieved in the overall time required for lower

01 (34 GS GB GO GI2 GI3 G14 G15 GI6 GI7 G21 023 024 025 a28 0.01 1 4 4 I I I I I I I 1 I I 1 J
Application

(a) All success - 4 workstations
9 - - . - - . - 4 3 workstations
-- 2 workstations

4.0 workstation 7

Gt7 GIB G27
Application

00

(b) All failure

Figure 5: Speedup in the overall time.

bound and scheduling analysis as a result of using mul-
tiple workstations. For example, the speedups when
using four workstations range from 2.0 to 4.0. The
speedups vary with the applications; larger speedups
are achieved in applications with more tasks. This is
encouraging because most applications are likely to be
much larger than the synthetic ones considered here.
By comparing the subfigures and Table 1, we observe
that even though the runtimes are much larger when a
scheduler fails to find a feasible schedule, the speedups
achieved are comparable to those when the scheduler
finds a fieasible schedule.

By comparing Figures 5 and Figure 6 , we observe
that speedups achieved in the lower bound analysis
are very similar to those corresponding to the overall

161

execution time. This is because SO-SO% of the overall
execution time is diie to the lower bound analysis. Al-
though, scheduling forms a small fraction of the overall
time in this paper, it is important to have a very fast
scheduling step. This is because in the overall synthe-
sis process, the scheduler will be invoked thousands of
times to evaluate different candidate architectures. In
this paper, we are presenting results from only one in-
vocation of the scheduler because only one candidate
architecture is considered.

In Figure 7 , we also notice that the speedups
achieved by the scheduler vary more drastically than
in the lower bound analysis. Further, we observe that
in some cases the speedups are much greater than
four even when only four workstations are used. This
is because, when multiple workstations are used, we
partition the application and impose some additional
constraints on few tasks to reduce the amount of com-
munication. As a result, the search space investigated
is different for different number of workst.ations.

6 Conclusions
The paper focused on a distributed implementation

of two key steps of a synthesis systems. The first
step, namely lower bound analysis, determines a lower
bound on the number of processors and resources re-
quired to meet the constraints of the application. The
second step, namely scheduling analysis, determines
where and when the application tasks will execute.
We discussed several alternative techniques for par-
allelizing these two steps. The promising techniques
were implemented using the Parallel Virtual Machine
message passing system. The results of this imple-
mentation were presented in this paper. The results
show that the use of a network of workstations for
computer-aided synthesis of real-time computer sys-
tems is very promising.

Acknowledgements
We would like to recognize the support we received

from the Model Adva.nced Facility at the College of
Engineering, University of Wisconsin-X.la.dison.

References
[l] M. A. Al-Mohummed, “Lower bound on the num-

ber of processors and time for scheduling prece-
dence graphs with communication costs,” IEEE
Transactions on Soflware Engineering, vol. 16,
no. 12, pp. 1390-1401, December 1990.

[a] R. Alqadi and P. Ramanathan, “Architectural
synthesis of mission-critical computing systems,”
in Proceedangs Complex Systems Engiiieerang
Synthesas and Assessmenl Techi~ology Workshop,

pp. 185-192. Naval Surface Warfare Center, Sil-
ver Spring, Maryland, July 1993.

[3] R. Alqadi and P. Ramamthan, “Analysis of re-
source lower bounds in real-time applications,” in
International Conference on Distributed Comput-
ing Systems, May 1995.

[4] E. B. Fernandez and B. Bussell, “Bounds on the
number of processors and time for multiproces-
sor optimal schedules,” IEEE Transactions on
Computers, vol. (3-22, no. 8, pp. 745-751, August
1973.

[5] M. R. Garey and D. S. Johnson, “Complexity re-
sults for multiprocessor scheduling under resource
constraints,” SIAM Journal of Computing, vol. 4,
pp. 397-411, 1975.

[GI A. Geist, A. Baguelin, J . Dongarra, W. Jiang,
R. Mancheck, and V. Sunderom, PVM: Parallel
Virtual Machine, a user’s guide and tutorial for
networked parallel computing, MIT Press, 1994.

[7] S. Howell, C. M. Nguyen, and P. Q. Hwang, “Sys-
tem design structuring and allocation optimiza-
tion,” in Proceedings of the 1991 Systems De-
sign Synthesis Technology Workshop, pp. 117-
128, September 1991.

[8] C. L. Liu and J. W. Layland, “Scheduling al-
gorithms for multiprogramming in a hard real-
time environment,” Journal of the Association
for Computing Machinery, vol. 20, no. 1, pp. 46-
81, January 1973.

[9] J . W. S. Liu et al., “PERTS: A prototyping envi-
ronment for real-time systems,” Technical report
UIUCDCS-R-93-1802, University of Illinois, Ur-
bana, Illinois, May 1993.

[lo] I<. Ra.ma.niritham and J . A. Stankovic, “Dis-
tributed scheduling of tasks with deadlines and
resource requirements,” IEEE Transactiom on
Computers, vol. 38, no. 8, pp. 1110-1123, August
1989.

[ll] I<. Ra.ma.mritham and J . A. Stankovic, “Schedul-
ing algorithms and operating systems support for
real-time systems,” Proceedings of the IEEE, vol.
82, no. 1, pp. 55-82, January 1994.

[12] W. Zhao, I<. Ra.mamritham, and J . A. Stankovic,
“Scheduling tasks with resource requirements in
hard real-time systems,” IEEE Transactions on
Software Engineering, vol. SE-13, no. 5, pp. 584-
577, May 1987.

162

- 4 workstations
I I .___. ~.. 1 3 workstations
8- -PL 2 workstations

4.0 1 A-& 1 workstatiorl I

0.0 ' I
G1 G2 G3 G4 G5 G6 G7 G8 G9

4.0

3.0 n

i
-I i
2 2.0
B

1 .o

0.0,

Application
(a) All success - 4 workstatlons

1 3 workstations
% 2 workstations

&--a 1 workstation

~~

zc_*.-- _-_----- /----] _^_e-- -. *

1
Gi8 G27

Application

(b) All failure

Figure 6 : Speedup in the time required for the lower
bound analysis.

e-. 4 workstations

.... U 2 workstations
....

L
O'OGl o(d5 G O G;2 G;3 Gi4 G;5 G;8 G;7 G k G k & Gk

Application

(a) All success

20.0

16.0

4.0

0.0

'6

- 4 workstations
.-....... 4. 3 workstations
p~-.--.--za 2 workstations
L-------* 1 workstation

.......
~

I
G18 027

Application

(b) All failure

Figure 7: Speedup in the time required for the
scheduling.

163

