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Abstract 
High-level synthesis has become commonplace in 

many areas of computing such as VLSI design and 
digital signal processing. However, it is just begin- 
ning to receive attention in the area of real-time sys- 
tems. Given a real-time application and a design 
library of components, high-level synthesis involves 
three main steps: (i) estimation of processors and re- 
sources required to meet the constraints of the appli- 
cation, (ii) identifying suitable architectures using the 
components from the design library, and (iii) schedul- 
ing application tasks on the selected architecture. In 
this paper, we focus on the first and the third steps 
of this process. Specifically, we identify key issues 
in parallelizing these two steps. We then discuss ap- 
proaches to deal with these issues and present results 
of our distributed implementation. The results of this 
implementation on a network of workstations show 
that considerable speedup in overall runtimes can be 
achieved by using multiple workstations. 

1 Introduction 
Tasks in a real-time application usually have dead- 

line constraints by which they must complete their 
execution. Failure to complete a computation within 
a task’s deadline may lead to a catastrophe. Examples 
of such applications include flight-control systems, life- 
support systems, nuclear power-plants and process- 
control systems. Due to the severity of the conse- 
quences, a distributed computing system is often ded- 
icated to the tasks in a real-time application. This 
system must be carefully designed to ensure that all 
the constraints of the application are satisfied. How- 
ever, due to the large number of constraints involved 
and due to  the numerous design alternatives, design- 
ing such a computer system is a very difficult prob- 
lem. This problem can be alleviated with the help of 
computer-aided synthesis (CAS) tools which facilitate 
the search and evaluation of design alternatives. This 
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approach has been successful in other areas of comput- 
ing such as VLSI design and digital signal processing. 
However, the approach is just beginning to  receive at- 
tention in the area of real-time systems [2, 7, 91. 

The main issue in the design of CAS tools is their 
runtime complexity. Due to  the large search space, the 
time required for synthesis may be unacceptably large 
for use in “real” applications. To overcome this prob- 
lem, we have been developing algorithms/heuristics 
which run in a distributed fashion on a network of 
workstations and/or parallel computing systems. In 
this paper, we describe our techniques for such a dis- 
tributed synthesis of computer systems for real-time 
applications. We have implemented two key steps in 
the synthesis process, namely lower bound analysis 
and scheduling, on a network of workstations. The 
lower bound analysis step estimates the number of 
processors and resources required to meet the con- 
straints of the application while the scheduling step 
verifies whether the application constraints are sat- 
isfied on a candidate architecture. The implementa- 
tion is done using the Parallel Virtual Machine (PVM) 
message passing system [6]. The results of this imple- 
mentation demonstrate that the use of a distributed 
system for computer-aided synthesis has a tremendous 
potential . 

The rest of this paper is organized as follows. Sec- 
tion 2 contains an overview of the synthesis process. 
Then, Section 3 identifies some of the issues in paral- 
lelizing the lower bound analysis step of the synthe- 
sis process and then discusses solutions to  deal with 
them. Section 4 similarly deals with the scheduling 
step of the synthesis process. The results of an em- 
pirical evaluation of our distributed implementation 
are presented in Section 5 .  The paper concludes with 
Section 6. 

2 Overview of the synthesis 
tool 

The inputs to our synthesis system are a design li- 
brary of components, and the mission-critical applica- 
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Figure 1: An example real-time application. 

tion. The output includes a heterogeneous architec- 
ture containing components from the design library, a 
mapping of the tasks in the application onto the mod- 
ules in the architecture, and a schedule for the tasks 
and messages in the application. The design library 
contains processors, resources, and interconnects from 
which the distributed system is to be synthesized. 
Components in the design library are characterized 
by attributes such as performance and cost. The ap- 
plication is specified as a set of cooperating tasks and 
the constraints that each task must satisfy, e.g., a task 
may have deadline constraints, resource requirements, 
precedence relations, computational needs, etc. The 
objective is to identify the lowest cost computer sys- 
tem (constructed using the components in the design 
library) which satisfies all the constraints of the appli- 
cation. 

For example, Figure 1 shows a simple application 
with 10 non-preemptive tasks. The tasks are num- 
bered from 1 to 10. Each task is annotated with its 
computation time and its resource requirements (e.g., 
task 10 requires 6 units of computation on processor 
of type P1  and resource r l ) .  Tasks 1, 2, 3, and 7 are 
also annotated with their release times. Tasks 8-10 
are annotated with their deadlines. The precedence 
relationships between the tasks is shown by a directed 
arrow (e.g., tasks 1 and 2 must complete their exe- 
cution before task 5 can begin its execution). After a 
task completes its execution it sends information to its 
successors. A task must receive this information from 
its predecessors before it can begin its execution. If 
a task and its successor are assigned t80 two different 
processors, then the information is sent in the form 
of a message. The size of the message is indicated 
alongside the directed arrow. 

For this application, the design library must con- 
tain several copies of a processor of type P1 and a 
resource of type r l .  The synthesis system will select 
appropriate number of copies of processor P1 and re- 
source r l  and determine an interconnection struct,ure 

between them. In this paper, we assume that the se- 
lected processors are interconnected through a set of 
shared buses. Each processor can send or receive on 
all the buses in the system. Furthermore, we assume 
that there is a separate interconnection between the 
processors and the resources. The design of that com- 
munication network is not considered in this paper, 
i.e., we assume that the communication between a pro- 
cessor and a resource takes place instantaneously and 
there is no need to schedule those communications. 

Given a real-time application and a design library 
of resources, the key steps in the synthesis process are: 

1. - Lower Bound Analysis: Compute a lower bound 
on the number of processors, resources, and inter- 
connects required to  meet the constraints of the 
application. 

2. Module Selection: 

(EL) Choose processors and resources from the 
design library for inclusion in the architec- 
ture. 

(b) Identify a suitable interconnection structure 
between the selected components. 

3. Scheduling: Evaluate the architecture identified 
in Step 2 by scheduling the application tasks and 
the resulting messages on the architecture. 

-- 

4. Terminate if a satisfactory solution is found. Oth- 
ervvise, go to Step 2 and improve the architecture 
based on the results from Step 3. 

The lower bound analysis step is considerably longer 
than the other steps, thus it is essential to parallelize 
it. Steps 2 and 3 will be invoked many times dur- 
ing the synthesis process, thus they also need to be 
parallelized. 

3 Distributed Lower Bound 
Analysis 

Fernetndez and Bussell [4] did one of the earliest 
work on determining a lower bound for the number 
of proc'essors required to schedule a given applica- 
tion witshin its critical time. They considered applica- 
tions in which the tasks have integer execution times 
and precedence relationships, but, zero communica- 
tion time with other tasks. Al-Mohummed [l] ex- 
tended the algorithm in [4] to  applications in which 
the communication requirements between the tasks 
is non-zero. However, Al-Mohummed's work did not 
deal wit.h many of the constraints commonly found in 
real-time applications. Just recently, Alqadi and Ra- 
manathan extended the algorithm in [l] to deal with 
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Figure 2: An example application for illustration of 
EST analysis. 

release time, deadline, and resource constraints [3]. 
The implementation in this paper is based on the the- 
oretical results in [3]. However, several issues had to 
be resolved in converting the results to an efficient 
implementation. Before describing these issues, we 
briefly review the results from [3]. 

3.1 Informal Overview of Lower 
Bound Analysis 

The lower bound analysis in [3] has four basic steps: 

EST Analysis: Compute the earliest start time 
(EST) of each ta.sk in the application. 

LCT Analysis: Compute the latest completion 
time (LCT) of each task in the application. 

Partitioning: Partition the application tasks into 
a sequence of smaller subsets such that each sub- 
set can be treated independently with respect to 
lower bound analysis. 

Lower Bound Computation: Compute a lower 
bound on the number of units of each proces- 
sor/resource required by the application. 

EST Analysis. The EST analysis starts with tasks 
that have no predecessors and recursively proceeds to- 
wards tasks which have no successors. It evaluates the 
EST of a task only after comput,ing the EST of all its 
predecessors. If there are no communication require- 
ments, then the evaluation of the EST of a task is 
simple, given the EST of its predecessors. However, if 
there are communication requirements, then the eval- 
uation of EST is more involved. The basic idea of 
this analysis is best illustra.ted by a simple exa.mple. 
Consider the evaluation of the EST of task T4 in Fig- 
ure 2. In this example, T4 has trliree predecessors, T1, 
T2, and T3. The computation times of T1, T2, and 
T 3  are 3 units each. The comput.a.tion time of T4 is 5 
units. Furthermore, after completion of TI, T 2 ,  and 
T3, the time required to send messages to T4 (if they 
are assigned to a different processor) are 1, 2 ,  and 3 

units, respectively. Also, suppose that the EST of T1, 
T2, and T 3  are 0. 

If T4 is assigned to a processor different from those 
of T1, T2, and T3, then T4 cannot start before time 6 
since it must receive a message from T3. However, if 
T 3  and T4 are assigned to the same processor which 
is different from that of T1 and T2, then T 4  cannot 
start earlier than 5.  This is because there is no need 
to send a message from T 3  to T 4  and T4 must wait 
for a message from T2. Now, if T2, T3, and T 4  are 
assigned together and T1 is a t  a different processor, 
then T 4  cannot start earlier than time 6, because T2 
and T 3  must complete their execution before T4 can 
begin. That  is, the earliest start time of T 4  depends 
on which combination of its predecessors are assigned 
together with T4. Therefore, to  determine the EST 
of T4, one must find the best subset of its predecessor 
to be assigned to the same processor as T4. An effi- 
cient algorithm to identify such subsets are described 
in [3]. Using this algorithm, the EST of all tasks in 
an application can be found in O ( E )  time where E 
is the total number of direct precedence relationships 
between the tasks. 
L C T  Analysis. The algorithm for LCT analysis is 
similar to that of EST analysis. The LCT of a task is 
evaluated only after the LCTs of its successors. As in 
the case of EST analysis, the LCT of all tasks in the 
application can be found using an O ( E )  algorithm. 
Part i t ioning.  Using the EST and LCT of the tasks, 
the third step partitions the application with respect 
to each resource. The partitioning is done to reduce 
the runtime complexity of the next step. Basically, let 
r be a resource used by the application and let ST,. be 
the set of tasks which require resource r .  ST,. is then 
partitioned into subsets Prl, Pr2, . . . , P,., such that 
the LCT of every task in P,.l is less than or equal to 
the EST of every task in any Prk, for all I , k ,  k > 1. 
It is then proved in [3] that each of these partitions 
can be treated independently while computing a lower 
bound for resource r .  
Lower Bound Computation. Consider a partition 
P,., and let EST, be the smallest EST among all tasks 
in P,./. Likewise, let LCTl be the largest LCT among 
all tasks in P,.]. Now consider an interval [t l ,  t z ]  such 
that EST( 5 tl < t 2  5 LCT,. Let * , . ( ~ , t l , t 2 )  be the 
minimum computation time which must be completed 
by task 7 in the interval [ t l ,  t 2 ]  on resource T in order 
for all tasks to complete by their respective LCTs. 
Let ST, be the set of tasks which require resource 
T .  Then @,.(tl, t z )  = ETEST, Q , . ( ~ , t ~ , t z )  is the total 
ininiinum computation time which must be completed 
on resource T in [ t l , t z ] .  Therefore, in order to ensure 
t,liat all tasks complete by their respective LCTs, we 
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need at least ['~~~'~~)1 copies of resource r .  That 

is, 

(3.1) 
The correctness of the above equation is proved in 
[3]. In this equation, the outer maximum is over all 
partitions and for each partition Prl, the inner max- 
imum is taken over all possible intervals [tl,t2] E 
[EST,,LCTi]. 

3.2 Implementation Issues 
There are two issues which have to be resolved in 

converting the theoretical results in the previous sec- 
tion to an efficient distributed implementation. These 
two issues are: (i) selection of intervals, and (ii) the 
parallelism approach. The first issue arises because 
for each partition the maximum operation is to be 
taken over uncountably many intervals. As a result, a 
direct implementation of Equation 3.1 is computation- 
ally intractable. On the other hand, if the maximum 
operation is taken over fewer intervals, then the re- 
sulting lower bound may be smaller (hence, weaker) 
than the lower bound as given by Equation 3.1.  The 
challenge is to select a suitable set of intervals such 
that the resulting bound in reasonably close to the 
bound given by Equation 3.1 while being computa- 
tionally tractable. 

The second issue arises because the way in which the 
workload is distributed affects the runtime efficiency 
of the distributed implementation. In the following 
two subsections we discuss these two issues in more 
detail and present our approach for tackling them. 

3.2.1 Selection of intervals 
If all the computation and the communication times 

in the application are integers, then the bound in 
Equation 3.1 can be computed by considering all pos- 
sible integer intervals [a, b] C [0, D,,,], where D,,, is 
the largest deadline in the application. This idea was 
suggested by Fernandez and Bussell [4], although their 
work did not deal with many of the constraints found 
in real-time applications. Since there are O(Dk,,) 
such intervals and since D,,, is often quite large, the 
runtime complexity of this approach may be unaccept,- 
able for many real-time applications. 

An alternate approach is to only consider all in- 
tervals of the form [e, , I , ] ,  where T is a task in the 
application and e, (/,) is the EST (LCT) of task T .  

This approach was suggested in [l], The advantage is 
that there are exactly N intervals, where N is the to- 
tal number of tasks in the application. However, our 

experience indicates that using only N intervals gives 
a weak lower bound. 

Our (approach is to choose a set of random intervals 
within each partition. For each partition, the total 
number of intervals considered is equal to RSN,  where 
R is a design parameter and N is the number of tasks 
in the application. In our implementation, R = 40. 
3.2.2 Parallelism Issue 

There are two possible ways of parallelizing the 
lower bound analysis, Application Parallel and Com- 
putation Parallel. In the discussion below, we describe 
these two ways and argue that Computation Parallel 
approach is better than the Application Parallel ap- 
proach for lower bound analysis. 
Application Parallel Approach. In this approach, 
the computational load is distributed among the work- 
stations by partitioning the application and assigning 
a subset of tasks to each workstation. Each work- 
station then performs all computations in the lower 
bound ,analysis for the set of tasks that has been as- 
signed to it.  The workload is distributed because each 
workstattion has to deal with only a subset of the tasks 
in the atpplication. 

However, due to the nature of the computations in 
the lower bound analysis, each workstation will have 
to comimunicate extensively with other workstations 
to perform its computation. For example, consider the 
computations in the EST analysis. To compute the 
EST of a task, the corresponding workstation needs 
the EST of the predecessors of the task. If a prede- 
cessor of the task is assigned to a different worksta- 
tion, then its EST value must be obtained from the 
other workstation, i.e., a communication overhead is 
incurred in the EST analysis. A similar type of com- 
munication overhead is necessary for the LCT analy- 
sis. 

There is also a need for communication in the final 
lower bound computation step, and when performing 
the mair operations. 
Computation Parallel Approach. In this ap- 
proach, each workstation has the entire application. 
However, for each task, it performs only part of the 
computations needed in the lower bound analysis. In 
particular, each workstation independently computes 
the EST and the LCT of all tasks in the applica- 
tion. E,sch workstation then independently identifies 
the partitions for each resource. The workstations 
then independently choose to work on mutually dis- 
joint set of intervals, i.e., the workload here is dis- 
tributedl by dividing the set of intervals among the 
workst,ations. Each workstat,ion independently com- 
putes a lower bound for each resource based on its set 
of intervals. The workstations perform a reduction 
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operation to  compute an overall lower bound for each 
resource. 

The main disadvantage of this approach is that 
some of the computations are redundantly performed 
by all workstations. The advantage, of course, is that 
there is no need to convey this value to other worksta- 
tions. The only communication occurs at the end; a 
maximum operation on one value for every resource. 
Since communication is very expensive in a network of 
workstations, the reduction in communication is more 
significant than the increase in computation. Thus 
this approach works better than the Application Par- 
allel approach. 

4 Distributed Static Schedul- 
ing 

Due to its importance, the scheduling problem 
has received considerable attention from researchers 
[8, 11, 121. For the kind of applications considered 
here, the problem is known to be NP-complete, but 
several good heuristics have been proposed [5, 111. 
However, to the best of our knowledge, none of the ex- 
isting work have addressed the problem of distributing 
a static scheduler to reduce its runtime. Existing work 
on distributed schedulers usually focus on inserting a 
dynamically arriving task in the schedule of tasks a.1- 
ready present in the system [lo]. The incoming tasks 
are typically assumed to be independent of the tasks 
already present in the system. The main issue is to 
determine whether the constra.int,s of a.n incoming task 
can be met without jeopardizing the promises made to 
other tasks. 

In contrast, in this paper, we discuss an approach 
for distributing a static scheduler. A static scheduler 
has all the necessary information a.bout the tasks it has 
to schedule. However, the number of tasks is typically 
fairly large and the tasks are usually not independent 
of each other. The main issue here is how to distribute 
and coordinate the computations in a scheduler in or- 
der to ensure that all the constraints of the application 
are satisfied. 

As in the case of lower bound analysis, there are two 
ways of distributing the scheduling workload a.inong a. 
network of workstations. One approa.ch is to partition 
the set, of processors and resoiirces required by the 
application and assign a. subset t,o ea.ch workstmatmion. 
The workstation is then responsible for scheduling on 
its subset of processors and resources. Each worksta- 
tion may have to perform some computation for every 
task in the applica.tion. An alt,erna.te approa.ch is to 
partition the application ta.sks a i d  a,ssign a subset of 
ta.sks to workstation. A workst,a.t.ion is then re- 
sponsible for scheduling only tshe ta.sks in it.s assigned 

subset. However, each workstation may have to  sched- 
ule on all the processors and resources required by the 
application. 

The two approaches differ in the nature and the 
amount of interaction needed between the worksta- 
tions. In the first approach, when scheduling a task,  
the workstations need to know where and when the 
task's predecessors have been scheduled. To obtain 
this information, a communication overhead is in- 
curred after scheduling each task in the application. 
This approach has significant communication over- 
head and thus lower runtime efficiency. In contrast, as 
shown later in this section, the amount of communica- 
tion between the workstations in the second approach 
can be minimal if the application is partitioned care- 
fully. Consequently, the second approach has better 
runtimes. We pursue this approach in this paper. We 
first present the partitioning scheme and then give an 
overview of the scheduler used in our implementation. 

4.1 Partitioning Scheme 
Let I? be the set of tasks in the application and let 

m be the number of worksta.tions participating in the 
distributed scheduler. Then, the objective of the par- 
titioning stra.tegy is to identify m disjoint subsets rl, 
. . . , rm such that: (i) UElra = r ,  and (ii) the LCT 
of all tasks in I?i is less than or equal to the EST of 
all tasks in I'j , for all i, j, j > i. The rationale for this 
objective is that each of these sets can be scheduled 
independently by a worksta.tion without any commu- 
nication overhead. This is because the time window 
in which the tasks in l 7 d  must execute is disjoint from 
the time window for the tasks in rj, j # i .  

However, it may not always be possible to partition 
I? in this fah ion  without some additional constraints. 
To ma.ke this possible, the partitioning strategy im- 
poses a.dditiona1 release time and/or deadlines con- 
straints on some tasks. Theoretically, these additional 
constraints may make the application impossible to 
schedule. However, our experience indicates that this 
is not the case (see Section 5). The question then 
is how do we select the additional constmints to be 
imposed on the application? 

Our a.pproa,ch for determining the additional con- 
straints is very simple. This simplicity is of a t  most 
iinport,aiice because this partitioning st,ep is an over- 
1iea.d which is not present in a non-distributed sched- 
uler a.nd this overhead affects the runtime efficiency 
of the distributed implementation. Our approach is 
to first partition the interval [0, D,,,] into m equal 
subint<erva.ls, where D,,, is the largest hard deadline 
in t,he qiplication. For tasks whose EST and LCT lie 
wit,liin t.he sa.me subinterval, we do not impose a,ny ad- 
ditional constraint,s. For other tasks, we either add a 
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(a) Periodic jobs (b) Invocations in a superperiod 

Figure 3: An example application. 

release time greater than the task's EST or a deadline 
less than its LCT so that its modified EST and LCT 
lie within one subinterval. Note that, because of the 
way in which the constraint is generated, any feasible 
schedule of the modified application is also a feasi- 
ble schedule of the application. However, as stated 
earlier, it is theoretically possible for the modified ap- 
plication to  be infeasible even though the applica.tion 
is feasible. If this happens, the distributed scheduler 
will not be able to  identify a feasible schedule whereas 
a non-distributed scheduler may have succeeded. 

To illustrate this approach consider the simple ap- 
plication in Figure 3(a). The application has two pe- 
riodic jobs with periods 4 and 10, respectively. The 
first job is comprised of three non-preemptive tasks 
(namely A, B, and C) whereas the second periodic 
job has only one non-preemptive task (namely D). The 
precedence relations between the tasks in the first job 
are shown as directed arrows. The execution time of 
the tasks is shown as weights nea.r t8he corresponding 
vertices. For simplicity, the communica.tion times be- 
tween the tasks are assumed to be zero. Figure 3(b) 
shows the invocations of these two jobs in a super- 
period (i.e., least common multiple of the periods). 
The scheduler must find a feasible schedule for all the 
tasks in this superperiod and repeat the schedule for 
the subsequent superperiods. The numbers enclosed 
in [ ] are the EST and the LCT of t8he corresponding 
task. 

Now suppose that this application is to be sched- 
uled using two workstations. Then, we must, pa.rtition 
the tasks in Figure 3(b) int.0 two groups and assign 
them to the two workstations. To identify this parti- 
tion, our approach divides t,he [0,20] into two subin- 
tervals [0, lo] and [lo, 201. For all tasks whose EST 
and LCT lie within one of these intervals no addi- 
tional constraints are imposed. In t,liis example, this 

condition is true for all tasks except task 3D. The 
EST of task 3D lies in [0,10] whereas its LCT lies in 
[lo, 20:l. We, therefore, need to imp'ose an additional 
constraint on this task. Since the subinterval bound- 
ary (i.e., 10) is midway between the EST and the LCT 
of this task, we can add either a release time or a 
deadline constraint. For example, we can impose a 
deadline of 10 on this task and thus make its modified 
LCT equal to 10. With this one additional constraint, 
tasks ].A, lB ,  lC ,  lD ,  2D, and 3D will belong to a 
partition while the remaining tasks will belong to the 
other partition. One workstation will independently 
schedule the tasks in the first partition in the interval 
[0,10] while the other workstation will schedule the 
remaining tasks in the interval [10,20]. Since these 
interva.ls are disjoint, no communication is required 
between these workstations after they have identified 
their respective partitions. In fact, they can each use 
any appropriate scheduling heuristic to schedule their 
partition on the processors and resources identified a t  
the end of the lower bound analysis step. 

Described below is an informal overview of the 
scheduler we used in obtaining results presented in 
Section 5. 
4.2 Overview of the scheduler 

The ,scheduler is provided with the number of copies 
of each resource needed by the application. It is re- 
sponsible for assigning the tasks to the resources and 
then determining a start time for each task such that 
all constraints of the application are satisfied. 

The scheduler starts by ordering the tasks in the 
increaaing order of their latest start times*. Initially, 
the latest start times are as obtained during the lower 
bound ana,lysis. The tasks are considered for schedul- 
ing one at a time. 

A task is scheduled on the processor on which it 
can coimplete the earliest. To identify this earliest 
completion time, the scheduler first picks the least uti- 
lized copy of each required resource. It then considers 
all possible processor assignments for the task. Each 
possible processor assignment generates a different set 
of pred'ecessor messa.ges that have to  be scheduled on 
the communication network. This is because only pre- 
decessors which are assigned to a different processor 
need to send a message through the communication 
network. For ea,ch possible assignment, the scheduler 
first determines the ea.rliest completion time of all the 
predecessor messages of the task under consideration. 
The least scheduhble time (i.e., when the processor 
and the resources under consideration are free to exe- 
cute the ta,sk) after all predecessor messages have ar- 

'The lat.est start time of a task is its LCT minus its compu- 
t,ation t.iime. 



rived plus the corresponding execution time for the 
task is the earliest complet,ion time of the task on a 
given processor. The task is scheduled on the proces- 
sor in which it has the minimum earliest completion 
time. After a task is scheduled, the ready list is up- 
dated to possibly include the immediate successors of 
the just scheduled task. 

The scheduler continues in this fashion until all 
tasks have been tentatively scheduled. If some tasks 
do not meet their deadlines, then the whole process is 
repeated after recomputing the latest start time of all 
tasks based on the assignment just generated. Note 
that, a new assignment results in a different communi- 
cation pattern for some tasks. Consequently, there is 
a change in the latest completion time of some tasks, 
which in turn, changes the priority order among the 
tasks in the next iteration. The scheduler terminates 
either when a feasible schedule is identified or when a 
pre-specified iteration limit is exceeded. 

5 Evaluation 
In this section, we present results of an empirical 

evaluation of the distributed synthesis tools. The 
goal of this evaluation is to demonstrate that mul- 
tiple workstations can be effectively used to synthe- 
size computer systems for real-time applications. To 
demonstrate this fact, we show tshat: (i) there is a sig- 
nificant reduction in the overall runtime as a result 
of using multiple workstations, and (ii) the likelihood 
of a distributed scheduler being able to  find a feasible 
schedule is comparable to that of a sequential sched- 
uler. It is necessary to demonstrate this second aspect 
because in distributing the scheduler, additional con- 
straints are imposed on the applicat,ion. We need to 
demonstrate that these additional constraints do not 
have much impact on the likelihood of finding a feasi- 
ble schedule. 

The evaluation is carried out by running the lower 
bound analysis and the scheduler on several synthetic 
applications. Each synthetic application is comprised 
of a number of periodic jobs with different periods, re- 
lease time and deadline constraints. The periodic jobs 
have between 5-15 non-preemptive tasks with prece- 
dence, resource, and communication constraints. The 
lower bound and scheduling analysis are performed by 
considering all the task activations in the interval [0, 
LCM], where LCM is the least common multiple of 
the periods of the jobs in that application. 

Table 1 shows the summary of the results obtained 
from our implementation on a network of Hewlett 
Packard workstations model H P  735. Each worksta- 
tion has 80 MBytes of memory and runs HPUX 9.0 op- 
erating system. The workstations are interconnected 

Table 1: Summary of the results from our distributed 
implementation. 

Appln. 
(Size) 

G 1  (106) 
G2 (503) 

G3  (88) 
G4 (214) 
G5 (115) 

G6 (49) 
G7 (61) 

G8 (540) 
G9 (922) 
G10 (71) 

G11 (106) 
G12 (186) 

G13 (91) 
G14 (1220) 

G15 (67) 
G16 (324) 
G17 (277) 
G18 (306) 

G19 (65) 
G20 (215) 
G21 (694) 
G22 (150) 
G23 (315) 
G24 (142) 

G25 (1109) 
G26 (839) 

G27 (2933) 

Lower 
Bounds 

(4 1 1 1) 
(5 3 3 3) 
(4 1 1 1) 
(4 2 2 2) 
(2 1 1 1 )  
(2 1 1 1) 
(2 1 1 1) 
(5 3 2 3) 
(4 2 2 3) 
(3  1 1 1) 
(4 1 1 1) 
(5 2 2 2) 
(2 1 1 1) 
(4 3 2 2) 
(2 1 1 1) 
(3 2 2 2) 
(2 2 1 2 )  
(2 1 1 1) 
(1 1 1 1) 
(4 2 2 2) 
(4 2 2 3) 
(4 2 2 2) 
(3 2 1 2) 
(3 1 2 1) 
(3  2 1 1) 
(2 1 2  1) 
(2 1 1 1) 

Timing (sea 
1 wk 

6.6(S) 
142.0(S) 

7.7(F) 
26.5( S) 

8.9(S) 
2.1(S) 
4.1(F) 

159.6( s) 
477.8(S) 

4.1(S) 
9.4(F) 

21.3( S) 

909.6( S) 
1.3(S) 

18.4( S) 
14.0( S) 
19.7(F) 

1.3(F) 

83.1(S) 

18.7(S) 
4.2(S) 

198.8(s) 
113.0(s) 

1594.6(F) 

5.4(S) 

9.1(S) 

5.4(S) 

2 wk 

83.9( F) 
4.0(S) 

15.8( S) 
6.0(S) 
1.7(S) 
2.5(F) 

254.1(s) 
2.6(S) 

13.0(S) 

477.0(S) 

4.7(S) 

90.9( S) 

5.3(S) 

3.5(S) 

0.9(S) 
10.2(S) 
7.9(S) 

0.8(S) 
5.3(S) 

43.7(S) 

11.2( F )  

3.2(S) 
10.4(S) 
2.7(S) 

11 0.3( S) 
62.7(S) 

858.9( F )  

using a Fiber Data Distributed Interface (FDDI) net- 
work. The distributed implementations are based on 
the Parallel Virtual Machine (PVM) message passing 
system version 3 .3 .5 .  In this table, the first column 
contains the number of task instances in the interval 
[0, LCM] of the corresponding a.pplication. The sec- 
ond column contains the results of the lower bound 
analysis; it shows the lower bound on the number 
of copies of the processor and resources Rl,R2, and 
R3, respectively. The final three columns show the 
overall runtimes in seconds for executions with 1, 2 ,  
and 4 worksta.tions, respectively. In these results, the 
scheduler is given two additional copies of the proces- 
sor than the lower bound given in the second column. 
Alongside the runtimes, labels S and F are included 
to indicate whether the scheduler Succeeded or Failed 
in finding a feasible schedule for the application. 

Figure 4 shows the fraction of applications which 
are successfully scheduled when 1, 2,  3 ,  and 4 work- 
stations are used. The four curves in this figure corre- 

4 wk 
3.2(S) 

47.0( F )  
2.9(F) 

lO.l(S) 
4.5(S) 
1.3(F) 
1.8(F) 

50.4(S) 
137.7(S) 

3.4(F) 
8.3(S) 
2.9(S) 

241.2( S) 
0.7(S) 
6.2(S) 

7.1(F) 
0.6(F) 
3.3(F) 

24.2( S) 
2.2(F) 
6.2(S) 

66.1(S) 

51 0.2( F )  

2.0(S) 

4.9(S) 

1.9(S) 

37.5( S) 
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Figure 4: % successfully scheduled applications versus 
number of workstations. 

spond to the number of processors given to the sched- 
uler after the lower bound analysis. For insta.nce, for 
the curve labeled Proc-LB, the number of processors 
given to the scheduler is equal to the value computed 
from the lower bound analysis. Likewise, for the curve 
labeled Proc_LB+2, the number of processors given 
to the scheduler is two more tha.n the value computed 
from the lower bound ana.lysis. Observe that, the per- 
centage of success does not vary significa,ntly with the 
number of workstations used. This means that, the 
additional constra.ints imposed on some tasks to re- 
duce the communication time in the distributed im- 
plementation (see Section 4) does not significantly af- 
fect the likelihood of successfully scheduling an appli- 
cation. Also note that, the percenhge of successfully 
scheduled applications improves in some cases when 
multiple workstations are used. This is due to the 
fact the scheduler is based on heuristics. 

Figures 5, 6, 7 show the various speedups a.chieved 
as a result of using multiple workstations for few se- 
lected applications. Specifically, Figure 5 shows the 
overall speedup whereas Figures 6 and 7 show the 
speedups achieved in the lower bound analysis and 
the scheduling steps, respectively. 

In these figures, the subfigure (a) shows the results 
only for those applications for which a feasible sched- 
ule was found in each of the four executions (i.e., ex- 
ecutions with 1, 2, 3, and 4 workstations). Similarly, 
the subfigure (b) shows the results only for those a.ppli- 
cations in which no feasible schedule was found in any 
of the four executions. Also, for the results in these fig- 
ures, the scheduler is given t,wo more processors than 
the value computed from lower bound analysis. 

It follows from Figure 5 ,  tha.t considera.ble speedups 
are achieved in the overall time required for lower 

01 (34 GS GB GO GI2 GI3 G14 G15 GI6 GI7 G21 023 024  025 a28 0.01 1 4  4 I I I I I I I 1 I I 1 J 
Application 

(a) All success - 4 workstations 
9 - - . - - . - 4  3 workstations 
*--* 2 workstations 

4.0 workstation 7 

Gt7 GIB G27 
Application 

00 

(b) All failure 

Figure 5: Speedup in the overall time. 

bound and scheduling analysis as a result of using mul- 
tiple workstations. For example, the speedups when 
using four workstations range from 2.0 to 4.0. The 
speedups vary with the applications; larger speedups 
are achieved in applications with more tasks. This is 
encouraging because most applications are likely to be 
much larger than the synthetic ones considered here. 
By comparing the subfigures and Table 1, we observe 
that even though the runtimes are much larger when a 
scheduler fails to find a feasible schedule, the speedups 
achieved are comparable to those when the scheduler 
finds a fieasible schedule. 

By comparing Figures 5 and Figure 6 ,  we observe 
that speedups achieved in the lower bound analysis 
are very similar to those corresponding to the overall 
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execution time. This is because SO-SO% of the overall 
execution time is diie to the lower bound analysis. Al- 
though, scheduling forms a small fraction of the overall 
time in this paper, it is important to  have a very fast 
scheduling step. This is because in the overall synthe- 
sis process, the scheduler will be invoked thousands of 
times to  evaluate different candidate architectures. In 
this paper, we are presenting results from only one in- 
vocation of the scheduler because only one candidate 
architecture is considered. 

In Figure 7 ,  we also notice that the speedups 
achieved by the scheduler vary more drastically than 
in the lower bound analysis. Further, we observe that 
in some cases the speedups are much greater than 
four even when only four workstations are used. This 
is because, when multiple workstations are used, we 
partition the application and impose some additional 
constraints on few tasks to reduce the amount of com- 
munication. As a result, the search space investigated 
is different for different number of workst.ations. 

6 Conclusions 
The paper focused on a distributed implementation 

of two key steps of a synthesis systems. The first 
step, namely lower bound analysis, determines a lower 
bound on the number of processors and resources re- 
quired to meet the constraints of the application. The 
second step, namely scheduling analysis, determines 
where and when the application tasks will execute. 
We discussed several alternative techniques for par- 
allelizing these two steps. The promising techniques 
were implemented using the Parallel Virtual Machine 
message passing system. The results of this imple- 
mentation were presented in this paper. The results 
show that the use of a network of workstations for 
computer-aided synthesis of real-time computer sys- 
tems is very promising. 
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Figure 6 :  Speedup in the time required for the lower 
bound analysis. 
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Figure 7:  Speedup in the time required for the 
scheduling. 
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