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Abstract

In this paper, we present an educational processor developed at An-Najah
National University. This processor has been designed to be a powerful
supplement for computer architecture and organization courses offered at the
university. The project is intended to develop an easily applicable methodology
by which students get a valuable experience in designing and implementing
complete processor with simple readily available off-the-shelf components. The
proposed methodology is beneficial to computer engineering students enrolled
at universities, specially in developing countries, where advanced laboratory
equipments are rarely available. The design philosophy is to build a general-
purpose processor using simple and wide spread integrated circuits. This
methodology includes. defining an instruction set, datapath layout, ALU
implementation, memory interface, controller design and implementation. For
testing and evaluation purposes, a debugging tool is aso built and implemented
to seridly connect the processor to a persona computer. In this paper, we
present the methods and components used in the design and implementation
phases and the tools developed to complete the design process. This
methodology has shown that students enrolled in the computer architecture
course get the full experience in processor design without the need for advanced
laboratory equipments. The components used are cost efficient and methods
proposed allow students to work at home, hence, this methodology has proven
to be cost effective and yet very educational.

Key Words: Educational Processor, RISC Architecture, Computer
Architecture, Instruction Set, Controller Design, Monitor Program.
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1. Introduction

Computer architecture, computer organization, and microprocessors,
are typica courses taught in computer/electrical engineering and
computer science departments. In these courses, a detailed study of
processor instruction set and design is investigated thoroughly. In a
computer architecture course, students are mainly theoreticaly
introduced to the design and implementation of an educational processor
like the DLX processor®®. Students can get a great experience in the
processor design methodologies if they are asked to complete a practical
processor design project. In this paper we propose a new processor that
we cal Educational Processor Unit (EPU), and a new design
methodology that could be used for educational purposes.

The processor we propose has been designed and developed at An-
Nagah National University as a supplement to a computer architecture
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course. The architecture of this processor has been chosen to assimilate
the current trends in processor design. The EPU’s instruction set is
designed to follow the reduced instruction set architecture (RISC)™
philosophy. Next, we give an overview of the EPU and the design
methodology adapted.

The instruction set for this processor is complete and genera. It
provides a good example on the design of general-purpose processors.
The design methodology is driven by the fact that advanced IC
components such as ASCIs, CPLDs, FPGAs, and sometimes GALS, in
addition to advanced laboratory equipments may not be available at the
universities of developing countries. Hence, we based our design
methodology on using basic integrated circuit (IC) components that are
readily available at affordable prices. In fact, we will rely on common
components such as ROMs, PALs, RAMs, and common MSI logic
circuits. The authors aso believe that an efficient method for improving
teaching computer-hardware related courses is to develop your own tools
for designing, debugging and testing purposes. Therefore, to facilitate the
EPU design, we have developed software tools such as: ALU generator,
controller generator, assembler, and tools for an interface circuit that
connects the EPU to a personal computer. The interface circuit facilitates
data transfer between the EPU and the personal computer as well as
simplifying the testing and debugging process. A monitor program has
also been developed that can be loaded into the memory of the EPU. The
monitor has been designed for the purposes of loading user programs into
EPU’s memory, getting a dump of the EPU’s memory and executing a
loaded program. Consequently, this methodology alows students to
complete their projects at home with minimal cost and with no need for
advanced |aboratory equipment.

With these objectives in mind, we propose the design of a new
processor that will certainly enhance the students knowledge in this
subject and yet is cost-effective. This methodology is very practical such
that students are able to build complete processors at minimal cost. The
experience they will go through will make them very knowledgeable in
all phases of processor design. The tools they will build will provide a
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good example in interfacing hardware components with a personal
computer. Proposing and developing new teaching methodologies to aid
students in their courses is popular in worldwide-known universities and
many papers with similar interests have been proposed. See for
example®" 19,

A detailed discussion of the processor proposed, methodology
adapted, components used, and the communication software developed
are presented in the following sections. Section 2 describes the
instruction set chosen for this processor. Section 3 discusses the datapath
including register file and other datapath components. The ALU design
and its generator are also presented in this section. Section 4 contains a
detailed discussion of the control unit and the timings of the control
signals needed to control the datapath execution. A software tool for
generating the control signals values is also presented. Section 5
includes a discussion of interfacing the EPU seriadly to a PC
accompanied with a monitor program used to debug the EPU and to
download and execute user programs. Final thoughts and concluding
remarks are presented in section 6.

2. TheProcessor and ItsInstruction Set

The processor we propose is a 16-bit general purpose machine with
features of recent processor design methodologies. Since recent trends in
computer architecture tend to use RISC technology, we decided to use
this trend because of its popularity in computer architecture courses as
well asits simplicity in hardware design. Since the main objective of this
paper isto show a practical and applicable processor deign methodol ogy,
one could argue that 8-bit machine would be sufficient. However, we
decided to use 16-bit architecture to show that the method is easily
applicable to design and implement a 16-bit processor. The first step in
processor design is to select the instruction format(s) and the instruction
set. Modern machines use uniform, orthogonal instruction set and format;
hence our instruction set follows this scheme. We have decided to use
three formats which are 16-bits in size as shown in Figure 1. Any
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instruction in the instruction set can be placed into one of three
categories. Immediate, Register or Jump.

Immediate (register) type instruction requires performing an ALU
operation on two operands one is a register (source and destination) and
the other is an immediate value (a register). Jump (conditional /
unconditional) is relative to current PC and an 11-bit signed value (-1024
to + 1023) is added to the PC.

Immediate | Opcode(5 bits) | RD Literal (8-hit)
Register Opcode(5 bits) | RD RS
Jump Opcode(5 bits) | Address (11 bits)

Figure (1): Instruction Formats

The 16 bits of an instruction is divided into the following parts:

1. Opcode: Operation code, 5 bhits, which means that up to 32
instructions can be defined in the instruction set.

RD: Destination register and source of first operand, 3 bits.
RS: Source register of second operand, 3 bits.
Literal: Signed immediate data, 8 bits.

Address: Jump and conditional jump, 11 bits. The address is relative
to the program counter.

o b~ w DN

In our machine, eight 16-bit registers will be used. Register R7 is
used as program counter and will also be visible to programmers so that
it can be used to implement some instructions such as call, return, and
jump to an address specified by aregister. Also, one register will be used
as a stack register but that is left to the programmer to choose.
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Throughout this paper, we will use R6 for stack operations to implement
pseudo instructions such as push, pop, call and return. The complete
instruction set is shown in Table 1. Even though there are only 30
instructions, almost any program can be written using this instruction set.

Table (1): Instruction Set

No | Opcode | Instruction Operation

0 | 00000 LURD, L Load upper byte of RD with L, old upper
byte is moved to lower byte.

1 00001 LL RD, L Load lower byte of RD with L

2 | 10000 LW RD, [RS] Store RD in memory at address specified
by RS

3 11000 SW [RS], RD Load RD from memory at address
specified by RS

4 11001 MOV RD, RS Move RSto RD

5 00010 ADDL RD, L ADD L toRD

6 00011 SUBL RD,L SUB L from RD

I 00100 ANDL RD,L AND RD with L

8 00101 ORL RD,L OR RD with L

9 00110 XORL RD,L XOR RD with L

10 | 00111 CMPRD, L Compare RD with L

11 | 10010 ADD RD, RS ADD RSto RD

12 | 10011 SUB RD,RS SUB RSfrom RD

13 | 10100 AND RD,RS AND RD with RS

14 | 10101 OR RD,RS OR RD with RS

15 | 10110 XOR RD,RS XOR RD with RS
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... Continue table (1)

No | Opcode | Instruction Operation

16 | 10111 CMPRD, RS Compare RD with RS

17 | 11010 ROL RD Rotate |eft one bit, MSB goesto Carry

18 | 11011 ROR RD Rotateright one bit

19 | 11100 SHL RD Shift left one bit, MSB goesto Carry

20 | 11101 SHR RD Shift right one bit

21 | 11111 SARRD Shift Arithmetic right one bit

22 | 01000 JMP address Jump to Address

23 | 01001 JZ address Jump if Zeroto Address

24 | 01010 JINZ address Jump if not Zeroto Address

25 | 01011 JC address Jump if Carry to Address

26 | 01100 JNC address Jump if not Carry to Address

27 | 01101 JS address Jump if signis set to Address.

28 | 01110 JNS address Jump if not sign to Address

29 | 10001 SWAP RD,RS RD gets the bytes of RS but the low byte
of RSis swapped with upper byte of RS
before loading into RD

To keep the design simple so that it can be easily implemented by
students, some instructions will be defined as pseudo instructions. Pseudo
instructions are implemented by using a combination of few instructions
from the origina instruction set. Table 2 shows some of these
instructions. Note that original instruction set is general and sufficient to
implement any program.
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Table (2): Pseudo Instructions

No | Pseudo Instruction | Sequence of Instructions
1 LI RD, 16-bit LURD, L; ; Load Upper 8-bits of RD
LL RD, L : Load Lower 8 bits of RD
2 CALL address SW[R6],R7 ; Push PC on stack
ADD R6, 1 ; Increment stack pointer
JMP address  ; Go to subroutine
3 RET SUB R6,1
LW R7,[R6]
4 PUSH RD SW [R6], RD
ADD R6,1
5 POP RD SUB R6,1
LW RD, [R6]

The next section discusses the datapath that implements these
instruction and components used in the implementation.

3. Component Organization and L ayout

Figure 2 shows the components that make up the datapath for our
EPU. As mentioned above, the register file consists of 8 registers of
which R7 is used to implement the program counter (PC). As shown in
the figure the datapath consists of the following components. special-
purpose registers (IR, MAR, FLAGS and PC (R7)), a set of general
purpose registers (total of 7 RO-R6 in the register file), multiplexers, a
sign-extension, SWAP, PC select (OR) and memory units. All registers
are 16 bits in size. These components are discussed in details in the
following subsections.

3.1 Registers, Program Counter and Multiplexers

In this subsection, we describe the main components of the datapath
shown in Figure 2 which includes: IR, Register File, Multiplexer, MAR,
Memory, Flags, OR, Swap, and the Sign Extension components. The IR
holds the instruction fetched from memory. The MAR holds the operand
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address to be loaded (stored) from (into) memory. Each of these two
registers is implemented by using two 74LS374 ICs . The register file is
a two-port register file with RS and RD fields (3 bits each) connected to
the address lines to select the corresponding data register at the RS and
RD output data ports. The RD field also selects the destination register.

RF_WR

RS/RD Select

v

Register
File

RS Data

RD Data

ALU_OP 7

FLAG WR
C| S e

SWAP ALU_EN

Shared bus (16-bit)

P

> =

\ 4
\ 4

Data

A\ 4

J S
M R >
P
A
D (PCS)PC
R
E
S
b ]
R
O
IR P
C
O
D |4
E <
Sign
IR_WR Ext

<

Memory

(SXT) Sign Extend

MEM_RD >

Databus

MEM_WR _

ALU_EN and
MEM_RD can not
be active at the
sametime.

A

Address

Figure (2): Datapath

Even though we use LSin our description S, LS, ALS, F, and HCT technologies

can be used.
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10 “An Educational Processor: A Design Approach”

The register file can be implemented by using specialized register
file ICs or by using common registers and decoders. We used the second
option because our objective is educational and we believe that it is
important to let the students design and build every major component of
the EPU. The hardware needed to implement these components is
significant and is shown in Figure 3. This is because the design
methodology dictates using readily available and easy to program ICs. In
the design of the register file, it has been found that there is a problem in
the number of Tri-State buffers needed which is 32 ICs. Therefore, to
reduce the number of ICs (mainly the tri-state buffers) we have altered
the register file implementation as shown in Figure 4. Such
implementation uses much less hardware, but requires special attention to
timing. The main difference between the register file shown in Figure 3
and the one shown in Figure 4 is that the second requires two cycles to
output the RS and RD ports whereas the first one requires one cycle.
Note that in this design we have used the internal Tri-state buffers of the
74LS374 registers.
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Figure (3): Possible Implementation of the Register File
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Figure (4): Register File Used in Our Implementation
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The PC Select (OR) Unit: The OR component consists of three OR
gates to make the output 7 to select the PC (R7) or passthe RD field, asit
will be made clear later. This will be required to increment the PC, and
also in a jump instruction. When the PC select signal is asserted® the
output will be 7(PC), when the PCS signal is 0 the output isthe RD field.
Figure 5(a) illustrates the OR component.

D9 08

D10 Dl
RD Field (3-hits)

P@ o> ‘_ oS> l\‘
0 0 0 0

PCS=1, Qut =R7=PC code
PCS=0, Qut =RD code

:
!
I
i
=

Qutput bits DB--Df5  SXT Control |
0 Sign Extend 8 bits

() ROreut (b) SOt L S Etend L1 bis

Figure (5): OR and SXT Circuit
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Sign Extend Unit: The circuit of this unit is shown in Figure 5(b). It
has a sign extend component that will be used to perform either sign
extend 8-bit literal value to 16-bits or sign extend 11-bit literal value to
16 bits. We need to sign extending 8-bit literal value to 16-bit in
instructions where one of the operands is litera. We need to sign
extending 11-bit literal value to 16 bits for jump instructions.

The ALU MUX: This multiplexer is needed to select either the
output of the SXT unit or the source register data (RS) for the second
ALU operand. A single bit control signal (ALU_MUX) is needed for this
purpose. This multiplexer is also implemented by using tri-state buffers
(74L.S244) ICs.

The Swap Circuit: This circuit either passes the output of the ALU
MUX asit is or swaps the lower byte with the upper byte. The swapping
is used to implement the LU and the SWAP instructions. Only in these
two instructions the SWAP signal is asserted, while for all other
instructions the swap circuit ssimply passes its inputs. The swap circuit is
implemented by using two multiplexers. Each multiplexer has two sets of
inputs where each set takes 8 hits (either the lower 8 bits or the upper 8
bits) see Figure 6 for details.

D0D7 ? Do-D;
Select Select SWAP
li pmux o 1 pux lo
8 A8
A 4
DD,

Figure (6): The Swap Circuit
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3.2. The Arithmetic and Logic Unit

In this section, we present a technique for building custom ALUSs by
using EPROMYEEPROMS, even though it is possible to build the ALU
by using components such as 74181 or similar ICs. We believe it is
better to let the students design ALUs from components such as GALS,
PALs, or EPROMSs. Here, we will describe building 16-bit ALU by using
our software tool that generates EPROM programming files. By using
this method, we can readily build custom ALUs from popular EPROMs
such as 2764, 27128, 27256, and 27512.

B12-B15 A12-A15 B8-B1l1 A8-All B4-B7 A4-AT B0O-B3 AO0-A3

A0  Usd
for
Al5 Rotate
<4v— Right
A12 A8 A4 | 9
Cout Cout Cout Cout A15
\ 4 \ 4 y \ 4 y YV y \ 4
SR Cin SRI Cin SRl Cin SRl Cin
! _— ] 'y

Zout | Staged Zin | Zout] StageZ Zin | lout] StageZ Zin | Zout] Stagel

Used for
! Rotate L eft
C 4 S
v v v v
Flags (Flip Flops)  F12-F15 F8-F11 F4—F7 FO-F3

Note: SRI isused for shift and rotate right

Figure (7): Block Diagram of Four StagesALU
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Figure 7, shows a 16-bit ALU built using four stages where each
stage takes 4 bits of al6-bit operand. Each stage corresponds to one
EPROM IC. Note that the address bus is used for inputs and data bus is
used for the outputs. The set of ALU operations required must satisfy the
requirement of the instruction set. The following set of operation is
generaly sufficient for a wide range of instruction sets, recall that A is
connected to RD (destination register) and B is connected to the swap
unit, which passes through or swaps either an RS or sign-extended literal.

1. F=A AND B.

2. FFAORB.

3. F=A XORB.

4. F=A+B ; ADD

5 F=A-B ; SUB

6. F=A+1. ; INC

7. F=A. ; PASSA

8. F=B ; PASSB

9. FFAROL 1

10. FFAROR 1

11. F=ASHL 1

12. F=A SAR1

13. F=ASHR1

14. F=[A15:A8]:[B7:B0] ; needed for LL instruction
15. F=[B15:B7]:[A7:A0]; needed for LU instruction

The following algorithm is used to generate the program files for the
four 27512 EPROMSs. This algorithm is designed for a 4-stage ALU but
can easily be modified for ALUs with more stages.
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Algoritm ALUGenStage (int Stage)
{ Assignthebitsfor A, B, Cin, Zin and SRI to the Address input.

Address = inputs= A,B, Zin, SRI

Open Binaryfile

FOR address =0 to Address = 2N o Inputs) ¢
/I extract the operands from the address bits, and shift them
appropriately
A = [AD3:ADO] ; bits 0—3 of address
B = [AD7:AD4]>>4 ; bits4—7 of address
Cin=[AD8]>>8;
SRI =[AD9] >>4; // Put bit in fifth position
OP = [AD13:AD10]>>10;
Zin =AD[14] >>14;
Let F be the output of 5 bits where the fifth bit is the Carry (Cout)
switch(OP){
case ADD: if (stage==1) F=A +B; elseF=A + B +Cin;
case SUB: if (stage==1)F=A-B; edseF=A-B-Cin;
caseINC: if (stage==1)F=A+1; eseF=A +Cin;
caseAND: F=A & B;
caeOR: F=A|B;
case XOR: F=A"B;
case PASSA: F=A
case PASSB: F=B;
caseROL: F=A<<1,
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F=F| Cin; // First bit is carry from previous stage
caseSHL: F=A>>1;

if (stage!=1) F=F|Cin;
case ROR: // Note SRI in the fifth position

F= (A|SRI) >>1;
case SLR: // Note SRI in the fifth position

F= (A|SRI)>>1;

if(stage ==4) F = F& 0x07 ; // clear bit15
case SAR: // Note SRI in the fifth position

if(stage ==4) SRI=(A & 0x8) << 1;

/ISRI =A4=bit15 of the 16-bit input

F= (A|SRI) >> 1;
CaseLL: // Inthiscase B isimmediate data and A is destination

if (stage==1) || (stage==2) F=B

else F=A//result will be [F15:F10]=[A15:A8]:[B7:B0]
Case LU: if (stage ==1)|| (stage ==2) F= A

else F=B // [F15:F10] = [B15:B8]:[A7:A0]
/[Thisworks in conjunction with the SWAP circuit

}
Zout = F & OxOF; // the 4 outputs excluding the carry zero
if (stage==1) Zin=1
if (Zout ==0 && Zin=1) Zout = 0x20 ; //6th bit // set Zout
else Zout = 0;
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F = F|Zout;

/IResult in F=F4:FO0 is the result of operation, F5 is Cout and
F6is the Zout

/[Store the output F byte tofile.

4. The Control Unit

Because of the simplicity of the hardwired design and for educational
purposes, we choose to implement the control by unit using the
hardwired control methodology. This unit is abstracted as a finite state
machine. In this abstraction, the control unit transits through a finite set
of states and is responsible for asserting and un-asserting all control
signals necessary for the datapath to function properly. The control unit
simply remembers the current state of the system and then based on both,
the current state and the set of input parameters (instruction opcode), the
next state is determined. In addition, necessary control signals for the
current state are also asserted. This processis repeated for all instructions
in the instructions set.

4.1 EPU Control

The control signal needed to control the various activities of the
datapath components are shown in Figure 2. These control signals are
specific to the type of components chosen for our datapath design.
Control signal names and values may change if the datapath components
change. Nevertheless, we based our design on using the most primitive
off-the-shelf components that are available at affordable prices. The
control signals of our datapath components are described in more details
in Table 3. Note that IR_ WR and RD/RS-Select use the same control
signal. This fact will be illustrated in the timing analysis described later.
Also notice that the ALU_EN and the RAM_RD are complements of
each other. The ALU_EN is connected to the Output Enable (OE) of the
EPROM s that implement the ALU.
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Table (3): Control Signal Names and Functions

Control signal Abbreviation | Description

Register File Write RF WR Write to Destination Register

Instruction Register IR_WR Write Instruction to Instruction

Write Also RS/RD Register

Select (Selects RD/RS in register file)

MAR Register Write | MAR WR Write to MAR Register

MEM Read MEM_RD Enablesreading from Memory

MEM Write MEM WR Enables writing to Memory

ALU enable ALU_EN Enablesthe ALU Tri-state buffer
output

ALU MUX Selection | ALU MUX Operand select Control Line

ALU operation ALU OP (4-bits)The Specified ALU Operation

PC Select PCS Selects PC(R7) or RD implemented
by ORing PCSwith RD (RD =
111=PC)

Sign Extend STX Either Sign Extends 8-bit literal or 11-
bit address to 16-bit value

Flags Write FLAG WR Write the carry, Sign and Zero D-Flip
Flops

The first step in designing control is to categorize the instructions in
the instruction set into groups such that all related instructions are placed
in one group. All instructions in a given group transit through the same
set of states in the state diagram when executed. Also, the same control
signals are asserted and un-asserted for all instructions in the group. This
makes the design much easier to manage. In addition, control signal
values are determined by state bases rather than by instruction bases.
Each instruction in the instruction set is placed into one of seven
categories as shown in Table 4. The categorizing is based on the type of
operation (ALU, Memory Load/Store, or Jump) and on whether it
affectsthe FLAGS, or if branch taken or not.
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Table (4): Categorizing the Instruction Set
Group A GroupB | GroupC | GroupD GroupsE | Group G
OPRD, RS | OPRD, OP RD, Taken jumps | And F Untaken
OPRD,L RS RS (Conditional | Memory [ JUMPS
(flags OPRD,L |OPRD.L | Andun- Load and | (Conditional)
affected) (flagsnot | (Only conditional) | Store
affected) | Flags
affected)
ADDL RD, L | Group B1 | CMP JMPaddress | Group E | JZ address
RD,L
SUBLRD,L | LLRD,L | CMP JZ address LW JINZ address
RD,RS RD,[RS]
ANDL RD,L | MOV JINZ address JC address
RD,RS
ORL RD,L JC address JNC address
XORL RD,L | Group B2 JNC address JS address
ADD RD, LURD, L JS address Group F | INSaddress
RS
SUB SWAP INS address | SW [RY],
RD,RS RD,RS RD
AND
RD,RS
OR RD,RS
XOR
RD,RS
ROL RD
ROR RD
SHL RD
SARRD
SLRRD
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Figure (7): The State Diagram

The state diagram that comprises the states of the finite state machine
that executes all instructions as categorized in Table 4 is shown in Figure
7. The operations performed in each state and which control signals are
asserted is shown in Table 5. In order to clarify the operations in each
state, S3 has been shown as 4 sub-states, but it is actually one state.
Although there are many possible implementations, we have chosen the
above states to facilitate the control unit implementation. In fact, the
technique will still work for different state diagrams.
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Table (5): The Operations Performed in Each State and Control Signals
Asserted

Control Signals (other signalsare

State | Group | Operation in their initial value, some signals
areactive L ow)

0 ALL MAR—PC ALU OP=PASSRD, ALU_EN,
MAR WR, PCS(PC SELECT)

S1 ALL | IR—MEMI[PC] MEM_RD, IR_WR, ALU_EN =
DISABLED

2 ALL PC—PC+1 ALU OP=INCA, ALU_EN,
RF_WR, PCS

(PC SELECT)

St A RD— RD op (RSorL) | ALU_OP=F(opcode) ALU_EN,
RF WR, FLAG WR

S B RD— RD op (RSor L) | ALU_OP = F(opcode) ALU_EN,
RF WR

S? C RD op (RCorL) ALU_OP = F(opcode)= subtract,
ALU EN, FLAG WR

s? D PC—PC+Address(ST | ALU_OP =F(opcode)=ADD,

X) ALU_EN, RF_WR, PCS (PC

SELECT)

A E,F MAR«<—SR ALU OP=PASSRS, ALU_EN,
MAR WR

E RD«— MEM[RS] ALU_EN=DISABLED,

MEM RD, RF WR

S6 F MEM[RS]«+ RD ALU OP=PASSRD,ALU_EN,
MEM WR

To simplify the control unit, we need to analyze the control signals
carefully. There are three signals that are functions of the opcode only
and not of the current state. These signals are: ALU_MUX, SWAP, and
SXT. The ALU_MUX signa is selected as the value of the most
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significant bit in the opcode (see Table 1 for opcode assignment). The
SWAP and SXT signas are generated along with the other control
signals as state-dependent signals. Generating these two signals along
with the state dependent signals add no cost to the required hardware.
Since, (see figure 8), we have 14 bits (7 state-dependent control signals,
4-bit ALU operation and 3-bit next state value) we need two EPROM
ICs. Thus, the two signals SWAP and SXT can be included at no cost.
Tables 6 describes how SXT and SWAP are determined along with an
instruction group. Based on current state and the instruction group other
control signals are generated as shown in Table 7. Note that the
ALU_MUX signalsistaken directly form the opcode (see Figure 8).

Bit 4(MSB) of Crock > ALUMUX
Opcode — SWAP
P ALU OP (4-bits)
Opcode —
(5bits) —> IR_WR Also RD/RS-Select
L 5 RF_WR
Z —> L 5 ALU_EN MEM_RD =ALU_EN
EPROM
—>| (Icy > PCS
S — —»  MAR WR
> FLAG WR
—> MEM WR
1 NEXT_STATE
Next State (3 bits)
Total EPROM Outputs = 16 outputs
State Register
(3 Flip flops)

Figure (8): The Control Unit
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Table (6): State Independent Control Signals and Group code.
No. Inputs Outputs Group
Opcode S Z C SWAP SXT
1 Group A - - - 0 0 A
2 Group B1 - - - 0 0 B
3 Group B2 1 0 B
4 Group C - - - 0 0 C
5 Group E - - - 0 0 E
6 Group F - - - 0 0 F
7 JMP - - - 0 1 D
8 JS 0 - - 0 1 G
9 JS 1 - - 0 1 D
10 INS 1 - - 0 1 G
11 INS 0 - - 0 1 D
12 JZ - 0 - 0 1 G
13 JZ - 1 - 0 1 D
14 INZ - 1 - 0 1 G
15 INZ - 0 - 0 1 D
16 | JC - - 0 0 1 G
17 JC - - 1 0 1 D
18 INC - 1 0 1 G
19 INC - 0 0 1 D

F (opcode) = 0 if operation requires select Literal, F(opcode) = 1 if operation
requires RS

An - Najah Univ. J. Res. (N.Sc.) Vol. 20, 2006




26

“An Educational Processor: A Design Approach”

Table (7): Generating Next State and State-dependent Signals

Inputs Outputs
Present State | OPCODE Next State | Other Control Signals
(Group)

S0 - S1 S0 Signalsasin Table 5, SWAP
& SXT asinTable 6

S1 - 2 S1 Signalsasin Table 5, SWAP
& SXTasinTable 6

A,B,CD S3 S2 Signalsasin Table 5, SWAP
& SXT asinTable 6

E,F A S2 Signalsasin Table 5, SWAP
& SXT asin Table 6

S2 G S0 S2 Signalsasin Table 5, SWAP
& SXT asin Table 6

S3 A 0 S;! Signalsasin Table 5, SWAP
& SXT asin Table 6

S3 B 0 S? Signalsasin Table 5, SWAP
& SXT asin Table 6

S3 C ) S:? Signalsasin Table 5, SWAP
& SXT asinTable 6

5¢] D 0 S:* Signadsasin Table 5, SWAP
& SXT asin Table 6

A E S5 S Signalsasin Table 5, SWAP
& SXT asin Table 6

A F S6 A Signalsasin Table 5, SWAP
& SXT asin Table 6

S5 - S0 S5 Signalsasin Table 5, SWAP
& SXT asin Table 6

S6 - S0 S6 Signalsasin Table 5, SWAP
& SXT asinTable 6
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4.2 Generating the Control Hardware of EPU

Based on the above explanation, we will present an algorithm for
generating a controller implemented from EPROMs /EEPROMS.
Although the algorithm presented is specific to the state diagram shown
in Figure 7, it can be easily modified for any state diagram. In our
implementation we need two ROM |Cs (ROM1 and ROM2).

Algorithm Generate Controller
Note: is concatenate operation
Open ROM1_fileand ROM2_file

Address = inputs = [OPCODE, Z.C, S and PRESENT _ STATE =
STATE _ REGISTER]

Let O1 =[ SWAP,SXT]; // 2 bits
Let O2 = [ALU_OP,IR WR RF_WR]; // 6 -bits
Let O3=[ALU_EN,PCS MAR WR, FLAG_WR, MEM_WR]; // 5bits and
Let GenerateTable5 (S,GROUP) be a function that sets O2 and O3 as
shown in the corresponding table row in Table 5,where S isa state //
For address = 0 to 2N of !t

Extract OPCODE, PRESENT_STATE from address

Set GROUP = Table6_Group (opcode,Z,C,S);// Group output as a
function of opcode in Table6

Set O1=[ SWAP, SXT] = Table6_ SWAP_SXT(opcode); // SWAP and
SXT can as function of opcode,Z,C,S in Table 6

[02:03] = GenerateTable5(PRESENT_STATE, GROUP)
IF (PRESENT_STATE) NOT in (S0, S1, ...$6) // invalid state
ROM1 = 0, ROM2 =0// That is, send to initial state O

An - Najah Univ. J. Res. (N.Sc.) Vol. 20, 2006



28 “An Educational Processor: A Design Approach”

ELSE {
IF (PRESENT STATE==S0 ) NEXT _STATE = SL
ELSE IF (PRESENT STATE==Sl)  NEXT STATE=
ELSE IF( PRESENT STATE in (S3,5,%5) NEXT STATE= 90

ELSE IF (PRESENT _ STATE= 34 & & GROUP = E) NEXT _
STATE= S

ELSE IF (PRESENT_STATE= 4 && GROUP=F) NEXT _
STATE= S

ELSE IF (PRESENT_STATE== )
SWITCH (GROUP){
CASESA, B, C, D: NEXT_STATE= 3
CASESE, F: NEXT STATE= S
CASE G: NEXT _STATE= S0
}/ End Switch
M/ End ELSE_IF
ROM1 = O1:02 ;// byte to be written to ROML1 file
ROM2 = O3:NEXT_STATE ,// byte to be written to ROM2 file
Il end ELSE
Write ROM1 to ROM1_File and ROM2 to ROM2_File

End for
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ALU =Pass PC = ’ =
ALU =Don't Care ALU=IncPC ALU = OP
< PC sdlect = 1 > PC select =0
TO T1 T2 T3
VA YA A
OPRD,RS or OPRD, L
[ MAR_W
4\/—\ MAR WR_CLK
MEM_RD Active low
IR_WR
STORE RS Clock
IR WR_CLK ‘/ \r( (In Register File)
ALU_EN Activelow
RF_WR
RF WR CLK 4/ u/
PC written here RD written here

Figure (9): Timing Diagram for Group A
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4.3 EPU Timing Requirements

Before implementing the control, the timing diagram for each group
of instructions shown in Table 4 must be drawn. This process is
necessary to ensure that there are no glitches and the data is written at the
correct triggering edge to guarantee the setup and hold times for the
registers and memory. Also, attention should be given to edge- triggered
and level-triggered components, for example memory read/write signals
are level-triggered active low signals. Also, since the ALU bus and the
RAM bus are shared the ALU output and the RAM output are shared,
therefore they cannot be enabled together.

ALU = Pass ALU =Don't ALU=Inc ALU = Pass
< PC select = 1 > PC select
TO T1 T2 T3 T4
/S e S Y
LW RD, [RS] /
MAR MAR
A MAR WR MAR=RS ‘/ \ o
RAM RD Active low RAM RD
IR WR
: ‘// \4‘— STORE RS Clock
IR WR: CL (In Reqister Filé
ALU EN \ Active low / \
RF WR
RF WR Cl ‘/ ‘/ \
PC written RD written

Figure (10): Timing Diagram for Load Operation
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To guarantee timing requirements for correct EPU operations, two
approaches are possible. In the first approach, all clock signals are
generated by the controller, thisis an easy approach, but it requires extra
states. In the second approach, the state register is triggered by negative
edge and the register clock signals (IR_ WR, MAR_WR and FLAG_WR)
are generated by ANDing the corresponding write signal with the clock.
Note that this will generate a glitch free write signal, however the
opposite will not. This timing step may result in modifying the state
design step and an iterative process is necessary to refine the design. To
illustrate the timing diagram, we will present the timing diagram for
Group A, Figure 9, (ALU operations) and Group E, Figure 10, (Load
Operation). Other group timings have been omitted for space
considerations

5. Monitor Program and Interfacing to PC

In this section, we will describe a monitor program (simple operating
system) used to download and execute user programs. The monitor
program is stored in an EPROM while user programs are downloaded
into RAM. The monitor program allows the EPU to be interfaced to a PC
through serial port, and hence, can communicate with an interface
program written by the authors. The user can download programs to the
EPU RAM and execute the downloaded programs. The programs must
first be written in assembly using the EPU instruction set and then
assembled by the assembler developed by the authors. The assembler
generates specialy formatted binary files which the monitor downloads
to RAM. The binary file is composed of frames (records) of the
following format:

SOF FT AH-AL COUNT HB-LB HB-LB ...... HB-LB CSH-CSL
Where:

SOF: Start of frame, one byte, weuse‘:’.

FT:  Frame Type, 00:Regular Frame, FF: Last Frame, one byte
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AH-AL: Highand Low bytes of address at which the instructionsin
the record start.

COUNT: Number of Instruction words in the frame usually 16. Thisis
aone byte.

HB-LB: High byteand Low byte of an instruction.
CSH-CSL: High and Low bytes of Checksum.

e.g. 8-input NAND to set at address FFOOH

Address

decoding

logic —
Addreés
Bus

CSs

AO: bit 0 of
4 Addressbus

To Serial Port of the
Personal Computer
(RX, TX and GND lines

are required only) FROM the EPU
UAR MEM_WR
T «
<] R522 | sm
Driver »”
232)
D0—D7
Low Byte of
DataBus

Figure (11): Interfacing the EPU to a Personal Computer
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Before describing the monitor program, we need to describe the
required hardware in order to interface the EPU with the personal
computer. Since we are using the seria port, then a UART will be
required which can be implemented either by hardware or by software.
Here, we will describe the interface that uses the hardware UART
8251®. |mplementing the UART using software is fairly simple and we
recommend using it if a hardwired UART is not available. Figure 11
shows the interface circuit. The UART code will reside at addresses
FFOOH and FFO1H of the EPU memory as shown in Figure 12.

FFFFH o
UART
FFOOH o
User

Program

Monitor

EPROM
0000H

Figure (12): EPU Memory Divisions
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Monitor Algorithm:

The monitor starts at address 0000H as shown in Figure 12 and will
be executed when the system is reset. We will describe the monitor
algorithm by using pseudo code; however some subroutines are presented
in detailed assembly while some details are eliminated for ssmplicity of
presentation. The monitor executes the following commands ‘P’ to
download program to the EPU, ‘E’ to execute aloaded program and ‘M’
to display a memory block. The pseudo code of the monitor algorithm is
given below. First the main program is described followed by the
subroutines.

Main Monitor Program
Initialize stack pointer: // Li R6, Stack-Start

Main-Loop //Pseudo Code
R5 = Call Read-Serial; /l Read command sent from PC
; Il Thisisa blocking read;
Switch (R5) {
CaseP: Send Ack-Byte; /l Sendsa ‘R’ for ready
Call Receive-Download; // Receive user program.
CaseM: Call Display-Memory; / Display a block of memory
CaseE: Jmp Execute-Program; // Execute User Program
Default: // Otherwise ignore
End Switch
Jmp Main-Loop; // loop forever
End Main

An - Najah Univ. J. Res. (N. Sc.) Vol. 20, 2006




Raed Algadi, & Luai Malhis

35

Receaive-Download:

//Pseudo Code

/I Receives the user program file composed of frames with format

described above.
Next-Frame:
R5= Read-Serial

/l Get Sart of Frame

If (R5!= SOF) Send-Error and return; // Not start of frame

character so
R5= Read-Serial
If (RS == FF) return,
R3 = Read-Word
R2 = Read-Serial;
R1=0;
While (R2 '= 01
R5 = Read-Word
MOV [R3], R5
R3 = R3+1;
R2=R2-1
R1= Rl + R5;
}/ End While
R5 =Read-Word,;

I/l Get Frame Type

/I'if Last Frame (FF) then stop.

I/l Get Start Address of instructionsin R3
/I Get Number of Instructionsin R2

/[ Initialize Computed Check Sum =0h

/l Read all Instruction words, R2 is Counter
/l Read Instruction

/I SoreInstruction at addressin R3

/I Increment Instruction address pointer
/I Decrement Instruction Count by 1

// Add read word to computed checksum,

/!l Get Checksum

If (RS !'= R1) Send Error; //if received and computed checksums are

Jmp Next-Frame;
End Rece ve-Download

// not equal send error.
/I get Next frame
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Display-Memory //Pseudo Code

This subroutine displays a block of memory specified by the starting
and end address.

Expects Starting address and end address

R2 = Read-Word /I Get block Start address and storein R2

R3 = Read-Word I/l Get End addressin R3

While (R2 1= R3){ // ' While address not equal to End address
LWR5,[R2] /I Read word from memory in RS
Send-Word Il Send the word in R5 to serial port
RR=R2+1 /I Increment address

}

End Display-Memory

Read-Serial: //Assembly code
/I Receives a byte from UART

LI R4, UART /I UART status register address in FFOO
WAIT: MOV R5,[R4];  // Read Status Register

ANDL R5, 01 Il lsreceiver empty?

JZ WAIT I f empty wait.

ADDL R4, 1, // Address of dataregister

MOV R5, [R4]; /I Read data register, received byte

Li R4, OOFF Il Mask off upper byte.

ANDL R5, R4 I/l Received byte in lower byte of RS

RETURN,; Il Result in lower byte of R5, high byte is zero
End Read-Serial
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Read-Word: //Assembly code
Reads aword from the UART and stores result in RS
CALL Read-Serid ; //High byte isread and stored in Low byte of R5

MOV RO, R5 /[High byteis now in low byte RO

SWAP RO, RO; / Now in High byte of RO

CALL Read-Seridl,; /ILow byte is read and is stored in Low
byte of RS

OR R5,R0 /I Wordisin R5

RETURN /Il Resultisin R5

End Read-Word

Send-Serial /l/Assembly code

/I Sends the lower byte in R5 serially by using the UART
Li R4, UART /l Address of UART Status register

N_RDY: MOV RO,[R4]; /I Read Status register
ANDL RO, 02; /' 1s transmitter empty
JNZ N_RDY /1 not empty wait
ADDL R4, 1, // Address of dataregister
MOV [R4], R5 /Il Send Byte
RETURN

End Send-Serial

Send-Word: /l/Assembly code

/I Sends the word in R5 serialy by using the UART
SWAP R5,R5 /l To send the high byte first
CALL Send-Seria //Send High Byte
SWAP R5,R5 //To Send Low Byte
CALL Send-Seria // Send Low byte
RETURN

End Send-Word
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Execute-Program: //Pseudo Code

Executes the user program, it expects the starting address of the program
R5 = Read-Word; //Read the starting address of the programin R5
MOV PC ,R5
RETURN /I Jump to starting address of user program

End Execute-Program

6. Conclusion

In this paper we described an educational processor aong with a
methodology to develop it. The main objective behind this processor isto
demonstrate that general- purpose processor can be implemented using
simple off-the-shelf components. In this project, we discussed all aspects
of processor design staring with instruction set definition which is based
on RISC philosophy. Then, we discussed the design and implementation
phase which is driven by the type of components available. Third, we
showed how control signals are specified and the importance of their
timings. Finally, we discussed a tool which serialy interfaces the EPU
with a PC. This tool includes a monitor program that resides in the EPU
memory and is used to transfer data/programs between the EPU and the
PC and to execute loaded programs.

The methodology presented can be easily adopted by computer
engineering (science) departments at universities in developing countries
to supplement a course in computer architecture or in processor design.
This methodology is used by students enrolled in the computer
architecture course a An-Ngah N. University to build a complete and
general-purpose processor. The students enjoyed and benefit greatly from
the experience they acquired from this project at a minimal cost, and with
no specia hardware resources. They are able to define, design,
implement, and debug a complete processor. Finaly, we recommend
adopting this methodology by universities in developing countries.
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