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Numerical Treatment of Strongly Elliptic Integral Equation
 N  Qatanani1
ABSTRACT:   The numerical treatment of boundary integral equations in the form of boundary element methods has became very popular and powerful tool for engineering computations of boundary value problems, in addition to finite difference and finite element methods. Here, we present some of the most important analytical and numerical aspects of the boundary integral equation. The concept of the principle symbol allows the characterization of the boundary integral equation whose variational formulation on the boundary provides there a Gãrding inequality. Therefore, the Galerkin method can be analyzed similarly to the domain finite element methods providing asymptotic convergence if the number of grid points increases. These asymptotic error analysis will be presented in details. To illustrate the efficiency of the Galerkin boundary element method we consider as an numerical experiment the strongly elliptic boundary integral equation with the logarithmic single layer potential. Consequently, we use the Gaussian elimination method as a direct solver and the conjugate gradient iteration to solve the positive definite linear system.  A comparison is drawn between these methods.
KEYWORDS:  Strong ellipticity, variational formulation, boundary element method, Galerkin scheme.
I.
Introduction
Although the reduction of elliptic boundary value problems to equivalent integral equations on the boundary represents historically the earliest method of corresponding mathematical analysis, its numerical exploitation has been developed only more recently creating many activities in computational mathematics and engineering from several different fields to implement boundary integral methods. Therefore, the corresponding integral equations form now a much larger class than the classical Fredholm integral equations of the second kind with weakly singular kernels. They contain singular integral equations with Cauchy respectively Giraud kernels in elasticity and thermoelasticity, Fredholm integral equations of the first kind with weakly singular kernels as in elasticity, flow problems, electrostatics and conformal mapping and integro-differential operators with non-integrable kernels as in acoustics or elasticity. Whereas in classical analysis these types of equations have been treated differently, modern Fourier analysis of pseudo–differential operators allow us to formulate unifying properties which provide also an analysis of numerical methods for their approximate solution. The concept of the principle symbol allows the characterization of boundary integral equations whose variational formulation on the boundary provides there a Gãrding inequality. Therefore Galerkin boundary element method can be analyzed similarly to the domain finite element methods providing asymptotic convergence if the number of grid points increases. In engineering codes, however, mostly point collection is used for boundary element methods. Here stability is much more difficult to prove. The asymptotic error analysis based on the Galerkin formulation will be presented. The paper is organized as follows: In section 2 we present some important aspects of the variational formulation and strong ellipticity for the boundary integral equation. As in finite element methods for elliptic boundary value problems, also in boundary element methods, the variational formulation and coerciveness properties provide the basic mathematical foundations for rigorous error and convergence analysis. The variational formulation rests on the weak formulation of the boundary integral equation on 
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. Section 3 is devoted to the numerical handling of the boundary integral equation. Thus, we describe the boundary element method based on the Galerkin discretization of the boundary integral operator. Some asymptotic error results based on Galerkin formulation are presented. In section 4, we illustrate with an example the Galerkin boundary element method for constructing the solution of the single layer potential integral equation with Logarithmic kernel. Consequently, the conjugate gradient method (cg–method) is implemented to solve the system of algebraic equations. This turns out to be the most efficient method for solving symmetric and positive definite systems.
II.
 VARIATIONAL FORMULATION AND STRONG ELLIPTICITY
Consider the strongly elliptic boundary integral equation
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To analyze the bilinear form on the left-hand side of (2.2) and the mapping properties involved we introduce the Sobolev spaces of functions on 
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associated with the scalar products
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for 
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turn out to be equivalent. For 
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where 
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Since the boundary integral operator considered here is also pseudo–differential operator, thus we have the following mapping property:

Theorem 2.1([11]) For a pseudo–differential operator
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is continuous. For the proof see, for example, reference [11].
Since we are interested in solving (2.1), the continuity (2.9) is not enough. We also need some properties that provide the existence of  
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Lemma 2.1: ([15,16]) For n = 2 the strong ellipticity (2.10) is equivalent to the property: For all 
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For proof see, for example, [15,16]. The proposed coerciveness results read as follows: 

Theorem 2.2: ([8]) If 
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In other words, 
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III.
GALERKIN BOUNDARY ELEMENT METHOD
In order to solve the boundary integral equation (2.1) numerically we are going to use the boundary element method based on the Galerkin discretization scheme. Thus we start by introducing a family of finite- dimensional boundary element spaces
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of 
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Let 
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Where the coefficients
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 are to be determined by solving the quadratic finite system of linear equations 
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These equations are equivalent to (3.2). Since
[image: image83.wmf])

(

)

(

:

2

2

G

®

G

-

a

a

H

H

A

, the bilinear form (3.2) and the influence matrix (3.4) will be well defined only if we require the conformity condition, 
[image: image84.wmf])

(

2

G

Ì

a

H

H

h

. For the consistency of the Galerkin approximation (3.2) we also require the approximation property 

               
[image: image85.wmf]0

inf

lim

)

(

0

2

=

-

G

Î

®

a

H

h

H

u

h

u

w

h

h

                                                 (3.5)

As is well known for linear problems, the convergence 
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Lemma 3.1: (Cea's Lemma [7]) If the LBB–condition holds then Galerkin equations (3.2) and (3.4) are uniquely solvable and we have the quasi–optimal error estimate 
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Where the constant 
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Proof: In order to show (3.6) we choose any 
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ii) For this case, our proof follows the corresponding finite element version (see for example [12]). From (i) we already have for 
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The first two terms can be estimated in the same manner as in case (ii), which yields 
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Combining the above results, we conclude that the Galerkin method for injective, strongly elliptic system of pseudo–differential or boundary integral equations under the assumptions of theorem 3.1 is eatable and converges quasi–optimally for 
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Theorem 3.2: ([15,16]). Let 
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Proof: (i) For the special case 
[image: image197.wmf]2

a

t

=

, the proposed inequality (3.14) follows from Cea's Lemma, i.e. (3.7) together with (3.13). 

(ii) For 
[image: image198.wmf]2

a

t

£

 we perform the well–known Aubin–Nitsche duality arguments as in [5]. First we observe that for bijective pseudo–differential operator
[image: image199.wmf]a

A

on
[image: image200.wmf]G

also its adjoint
[image: image201.wmf]*

A

with respect to the 
[image: image202.wmf]duality

2

-

L

is a bijective pseudo–differential operator of the same order. We therefore know that
[image: image203.wmf])

(

)

(

:

*

G

®

G

-

-

t

t

a

H

H

A

is continuous and bijective, in particular, for 

                 
[image: image204.wmf]j

=

v

A

*

 we have 
[image: image205.wmf])

(

)

(

G

G

-

-

£

t

t

a

j

H

H

c

v

 .                                                 (3.15) 

With the Galerkin equations we have 
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IV. NUMERICAL EXPERIMENT
In our test numerical experiment, we consider the boundary integral equation
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with the logarithmic single layer potential 
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Let 
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Where the coefficients
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are to be determined by solving the quadratic finite system of linear equations
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In fact (4.5) can be written in the following short form 
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 for the right-hand side of the  discretized equation. The computation of the influence matrix
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 has been performed numerically using Gauss quadrature. Since the operator 
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 is self–adjoint and positive definite, it follows that the matrix
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 is symmetric and positive definite. Hence we can implement the solution methods for the discrete equation (4.6), namely: The Gaussian elimination method as a direct solver and the conjugate gradient iteration. For more details on these methods see for example [3,4,9]. The cg–iteration is given by the following algorithm [9,10].
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3. Stop the calculation if 
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The convergence of the cg–iteration is based on the following theorem. 

Theorem 4.1 ( [9] ), see chapter 5) For the positive definite matrix 
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Table 4.1 shows the numerical results for the discrete equation (4.6) using the Gaussian elimination method and the conjugate gradient iteration. It contains both the number of iteration steps and the CPU–time in seconds required by the cg–iteration in addition to the CPU-time required by the Gaussian elimination. The number
[image: image253.wmf]N

 denotes the dimension parameter of the solved problem. 

	N
	Gauss elimination
	Cg-iteration

	
	CPU-time

 seconds
	No. of iterations
	CPU-time seconds

	128
	1.56
	7
	0.16

	256
	12.91
	7
	0.41

	512
	109.67
	7
	1.20

	1024
	902.52
	7
	3.36


Table 4.1

It is evident from the numerical results shown in table 4.1 that the cg–iteration is more efficient than the Gaussian elimination method for solving positive definite systems. It requires both less number of iterations and CPU-time in comparison to the Gaussian elimination. This demonstrates that one of the characteristic features of cg-iteration is its fast convergence.
V. Conclusions
This article shed some light on some of the most important analytical and numerical aspects of the strongly elliptic boundary integral equation. For a two-dimensional boundary value problems, the explicit Fourier analysis leads to a new class of quadrature based modified collocation methods-qualocation providing higher–orders of convergence than the Ritz-Galerkin or collocation methods.
In order to perform any of the boundary element methods we still have to carry out numerical integration for computing the weights  
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Since, in general, this cannot be done explicitly, the boundary 
[image: image256.wmf]G

 as well as these weights will be approximated and a corresponding perturbation analysis is needed. Based on Strang’s lemma for bilinear forms, such an analysis can be carried out. Still, numerical integration of the above coefficients is one of the major problems when writing boundary element codes. For two-dimensional problems, Galerkin collocation provides a fully discretized numerical scheme. Combining a Taylor expansion of the kernels of the boundary integral operators with clustering of integration domains, one can combine the integration of the boundary potentials with multigrid methods for boundary integral equations and develop very fast and efficient solution procedure. This analysis will be carried out in our forthcoming article.
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