
Pakistan Journal of Applied Sciences 2(1): 71-73, 2002
O Copyright by t he Science Publications, ZOO2

A Genetic Algorithm to Solve the Maximum Partition Problem

W a e l Mus ta fa
Computer Science Department

An -Na jah Na t i ona l University, Nablus, Palest ine'

Abstract: A maximum paNtEn of a directed weighted graph is partitioning the nodes into two sets such that
it maximizes the total weights of edges between the two sets. I n this study a genetic algorithm is proposed
to solve the maximum partition problem. Experiments performed on randomly generated graphs of different
sizes show that the proposed algorithm converges to an optimal solution faster than the existing heuristic
algorithm.

Keywords: Genetic algorithms, Text compression. Optimization, Graph Algorithms

Introduction
The work of Manber (Manber ,1997) , which focused on
a compression method that allows fast search directly on
compressed text, introduced a new graph problem. The
problem is determining which pairs of characters to be
replaced by single unused characters. Pairs of characters
should be chosen such that more compression is
achieved. Additionallv. to make direct search throuoh the ~ ~ - ~~

compressed text possole, pars cannot overlap (1.e. tne
flrst cnaracter in one palr cannot oe tne second cnaracter
in another pair).
The problem above is abstracted as a graph problem,
known as the Best-Non-Overlapping-Pairs Problem in
(Manber ,1997) . A directed graph G = (N, E), is
constructed where the nodes correspond to unique
characters used in the text. Edges represent character
pairs and weights represent the frequencies of these
pairs in the text being compressed. We want to partition
the nodes of the graph into two sets N1 and N2, such
that the sum of weiahts of edaes from N1 to N2 is
maximized. Fig 1 shows an example of a directed graph
and its maximum partition with sum of weights from N1
to N2 beino 19. The best non overlaooina oairs accordina . . - .
to this parition are bc, bd, and ac.

-
(a) (b)

Fig. 1: A directed weighted graph (a) and its maximum
partition (b)

The work in (Manber ,1997) also presented a heuristic
algorithm (HA) that produces near optimal solutions for
the maximum partition problem. This HA initially
partitions the nodes randomly into two sets N1 and N2.
Next, each node is examined to see whether switching
this node to the other set would improve the total sum
of weights from N1 to N2. Such switches are continued
until no more are possible. The process is repeated a
number of times with different random seeds and the
best result is reported.
The maximum partition problem for a graph with n nodes
has a solution-space size of 2", corresponding to 2"

subsets. I t is also an NP probem (Manoer ,1997) . kP
problems can only oe solved In po ynomla. tome oy non-
oetermlnlst c a aorltnms (HOrOw tz ana Sann..19781
Numerous heucstic methbds have been deveioped'to
solve such problems, but none of them promise optimal
soiutions.
This research presents a genetic algorithm (GA) to solve
the maximum partition problem. Genetic algorithms are
able to cover large search spaces effectivelv and have
Deen very succesif.. In producing near op t~m i l sout ons
to NP pro0 ems. A genetlc aigor~thm IS characterzed oy
creat ng solut ons tnrougn comolnlng parts of d~fferent
solutions ana mak ng smal mLtat onal cnanges to
so utlons (Dav1s.1991; Go~dberrg, 1989,
Holland.1975:M~tcneI ,19981. I n m s oaoer we take the
advantages of GAS to so6e the maximum partition
problem .
Genetic Algorithms: Genetic algorithms (GAS) are
search a gorlthms mooelea after the-oehav~ors'of genet~c
processes in natbre. Genet c a gorlthms operate on a
popu at on of ma vldua s, catlea cnrornosomes. A
chromosome is a strina of characters. called oenes and . ~~ ~~ -~ ~~ ~ ~

represents a possible Glution in the search space of the
problem. The quality of this solution is called
chromosome fitness. he fitness of each chromosome is
computed according to a problem-dependent fitness
function.
A generation is a GA steo in which several events occur.
A iumber of chromosomes with worst fitness value are
removed from the population. These are replaced by new
chromosomes obtained from aoolvina crossover . , , -
operations to the remaining chromosomes in the
population. Crossover is the operation of exchanging
CorresDondino aenes between two chromosomes: 1;
order t o achieve diversity in the population and to
prevent the algorithm from converging orematurely (i.e. - ..
before reach~ng theopt ma1 so l~ t~on) , mutauon IS app ea
to every chromosome n the popdlatlon. Mutat~on IS tne
operation of changing chromosome genes randomly with
certain probability. Excluding most fit chromosomes in
the population from mutation is known as elitism.
The Genetic Algorithm to Solve the Maximum
Partition Problem: Following is a definition of a GA to
solve the maximum partition problem for a directed
graph with set of nodes N. A partition of this graph into
two Sets of nodes N1 and N2 is represented by a
chromosome of IN1 bits. The Pth bit ind~cates whether
node i is in N l or N2. As an example, the following

-
Mustafa: A Genetic Algorithm t o Solve the Maximum Partition Problem

a b e d

1'100

..
chromosome represents the maximum partition shown
in Fia. 1. The fitness of a chromosome is the sum of

~ ~

weights from N1 to N2 in the partition it represents. F&
example, the fitness of the chromosome above is 19.
The GA to solve the maximum partition problem is as
follows.
Algorlthm: Maximum Partit ion (G(n,e): Weighted
Directed Graph):
1. Initialize the population with random chromosomes.
2. Improve fitness of the initial population by applying

the HA of (Manber ,1997) to (population-sizel2)
chromosomes selected randomly. For each such
chromosome, every bit is examined to see whether
flipping this bit would improve the fitness of the
chromosome. This process is repeated until no more
flipping is possible in the chromosome.

3. Repeat K times (generations).
a. Compute the fitness value for each chromosome in

the popuiation.
b. Sort the chromosomes in descending order

according to fitness values. The popuiation;~ then
divided into a lower half and an upper half, based on
fitness values. The upper half contains
chromosomes with the higher (better) fitness
values.

c. Remove 20% of the chromosomes from the
population. These chromosomes are selected
randomly from the lower half of the population.

d. Use crossover to construct new chromosomes to
replace the removed ones. Two parent
chromosomes are randomly chosen from the upper
half of the popuiation. The first INI/2 bits of one
chromosome are concatenated with the last INV2
bits of the other chromosome and vice versa. This
creates two new chromosomes. Crossover IS
performed (populatron-srzell0) t mes in order to
prodbce (populatron-srze15) new cnromosomes.

e Apply mutatlon to al cnromosomes In the populatlon
exceot the chromosome wlth tne hlghest fltness
value and the chromosomes created b y crossover in
step d. Each bit is considered when a chromosome
is mutated. I f a chromosome is in the lower half of
the population, the bit is flipped with a probability of
0.3. I f a chromosome is in the upper half of the
popuiation, the bit is flipped with a probability of
n n i

f. Remove duplicate chromosomes from the
population and replace them with randomly
generated chromosomes.

4. Output the highest fitness chromosome in the
popuiation.

Experiments show that the GA above is more likely to
converge to an optimal solution in small number of
generations when the initial population contains some
chromosomes with good fitness values. The first two

steps of the algorithm make the initial population by
creating random chromosomes and then improving half
of these chromosomes using the HA of (Manber ,1997)
Experiments show that improving more than half of the
initial population does not improve the GA chances of
converging in a small number of generations. The third
step in the algorithm determines the next generation.
After sorting chromosomes in the current popuiation
according to fitness values, 20% of this population are
randomly chosen from the lower half to be removed.
These are then replaced by new chromosomes obtained
by aDDivina sinale ooint crossover (Davis. 19911 to
chromoiomes slected randomly from'the -;per half of
populatlon. The crossover operation IS lllustratea n the
following diagram

Produces the new chromosomes:

Mutation is applied to the lower half of the population at
much higher rate (30%) than the upper half (1%) to
make more changes to chromosomes with lower fitness.
Other mutation rates did not make the GA converge
faster.

Resu l ts
We experimented with various population sizes on many
graphs. The algorithm converged to an optimal solution,
in a short execution time more often when setting the
population size to approximately (2/3)n where n is the
number of nodes in the graph. Smaller populations
resulted in longer time for the algorithm to converge.
Larger populations did not improve the results any
further.
To evaluate the performance of the presented algorithm
against the existing HA of (Manber ,1997) we have
implemented both algorithms using Con an 866 Pentium
111 processor. To ensure algorithm efficiency in both
space and time, graph partitions in the HA and
chromosomes in the presented GA were implemented as
unsigned integers. Each 16-bit unsigned integer

I

Mustafa: A Genetic Algorithm to Solve the Maximum Partition Problem

epresents a set of size 16 where every bit contains
nformation about one element. Sets of more than 16
!iements are represented as arrays of unsigned integers.
'his representation allows performing sets operations in
he two algorithms efficiently using bit-wise operators.
'he two algorithms were applied to 3 complete graphs
i.e. there is an edge between every pair of nodes) with
lumber of nodes 32. 64. and 128. The weiahts of edaes
"ere chosen randomly from the range [0,327671. i h e
woaigorithms were run on each graph for different time
)eriods. I n each run. the alaoilthme m r e amlied a
lumber of iterations "ntil the ;me period expired. Each
un in a given period was repeated a number of tirnes
lsina different random seeds. The number of times the
llgoithms converged to an optimal solution is reported.

lable 1: Results for running GA and HA 50 times on a
32-nodes qraph for different Lime periods

7un- time # Optimal
;Set) G A HA
> 38 28
15 45 42

dQ AQ

rable 1 shows results for the 32-nodes graph. Each of
:he two algorithms was run on this graph for the time
periods: 5, 15, 25, and 35 seconds. Runs of the two
algorithms were repeated for each of these periods 50
times. Our genetic algorithm (GA) converged to an
~ptimai solution 26% more than HA converged to an
Jptimai solution when run-time period was 5 seconds. As
Execution time increased. the difference between ~~~~~~ ~ ~

anvergence of the algirltnms decreased. Both
alaoritnms converged to opt.mal solut~ons in a. of tne 50
N ~ S when executbn time increased to 35 seconds.

Table 2:Results for running GA and HA 50 times on a
64-nodes graph for different time periods

Run- time # Optimal
[Sec) G A HA
100 21 13

The two algorithms were run on the 64-nodes graph also
50 times for each of the time periods 100, 200, 300,
400. 500. and 600 seconds. The results are shown in
~ab ie2 . i h e GA converged to an optimal soision more
than HA by aoout 61% when the a gorithms were run for
100 seconds. The GA also converged to an optimal
Solution more than HA by about 42% for the 200-
seconds execution time period. When run-time was
increased to 300 seconds. the GA converged more than
the HA by about 29%. i h e difference in convergence
times became smaller when the two algorithmsexecuted
for a laraer time ~er iod. Both aiaorithmsconverged in 48
out of t6e 50 runs when exectkon time was set to 600
seconds. Table 3 shows the results for the 128-nodes

tirnes. The execution time periods for this graph were
2000.3000.4000. and 5000 seconds. The GA converaed
to anoptmal soluiion more than HA by aboLt 70% &en
the two algoritnms ran for 2000 seconds. As w tn the
other two graphs, the difference between convergence
times decreased as execution time increased. Both
algorithms converged in most of the 20 runs when
execution time reached 5000 secotds Finally.

Table 3: Results for running GA and HA 20 tirnes on a
128-nodes qraph for different time periods

Run- time # Optimal
pet) G A HA
mnn 17 7

Conclusions
We presented an algorithm to solve the maximum
partition Drobiem. This DrObiem arises in text
compress on where the a m is to fmd cnaracter pars to
oe rep aced by unused characters n such away that the
COmDreSSed text can be searched directlv. The DreSented
algorithm combines a heuristic methob introduced in
(Manber, 1997) and genetic algorithms. Results of
runnina the aiaorithm on random araohs how that it
converges to an-opt mat solutlon faster than the exlst ng
neurlst c a gonthm. A sample of these results was g~ven
above. We believe that the abilitv of the aiqorithm to
converge to an optimal solution faster is v e 6 valuable
especially in text compression applications. This is even
becomes more important when there is a need to apply
the algorithm frequently in order to determine different
character codes for different text parts.
Future work is needed to investigate the effect of using
the heuristic in (Manber ,1997) with GAS after the
initialization step. One possibility, for example, is to
apply this heuristic on part of the population after every
certain numberof iterations. Other future work is needed
to incorporate th=~presented algorithm with the text
compression method in (Manber ,1997) . I n particular,
the alaorithm needs to be tested on araDhs that
represint characters a str~but~on on real t e x t c ~ h e rnpact
of the resulttng character codes on botn space an0 tlrne
need to be investigated

References
Davis. 1991. Handbook of Genetic Algorithms. Van

Nostrand Reinhold, New York.
Goldberg. 1989. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesly.
Holland. 1975,Adaptation in Natural and Artificial

Systems. University of Michigan Press.
Horowitz and Sahni. 1978. Fundamentals of Computer

Algorithms. Computer Science Press, Inc.,
Rockville, MD.

Manber. 1997. ACM Transactions on Information
Systems, Vol. 15, No. 2, Pages 124-136.

Mitchell. 1998. An Introduction to Genetic Algorithms.
MIT Press.

graph. Due to large execution times forthis graph, which
contains 128 X 128 edges, runs were repeated only 20

