’

Pakistan Journal of Applied Sciences 2(1): 71-73, 2002 -

© Copyright by the Science Publications, 2002

A Genetic Algorithm to Solve the Maximum Partition Problem

Wael Mustafa
Computer Science Department
An-Najah National University, Nablus, Palestine”

Abstract: A maximum partition of a directed weighted graph is partitioning the nodes into two sets such that
it maximizes the total weights of edges between the two sets. In this study a genetic algorithm is proposed
to solve the maximum partition problem. Experiments performed on randomly generated graphs of different
sizes show that the proposed algorithm converges to an optimal solution faster than the existing heuristic

algorithm.

Keywords: Genetic algorithms, Text compression, Optimization, Graph Algorithms

Introduction

The work of Manber (Manber ,1997) , which focused on
a compression method that allows fast search directly on
compressed text, introduced a new graph probiem. The
problem is determining which pairs of characters to be
replaced by single unused characters. Pairs of characters
should be chosen such that more compression is
achieved. Additionally, to make direct search through the
compressed text possible, pairs cannot overlap (i.e. the
first character in one pair cannot be the second character
in another pair).

The problem above Is abstracted as a graph problem,
known as the Best-Non-Overtapping-Pairs Problem in
{(Manber ,1997) . A directed graph G = (N, E), is
constructed where the nodes correspond to unique
characters used in the text. Edges represent character
pairs and weights represent the frequencies of these
pairs in the text being compressed. We want to partition
the nodes of the graph into two sets N1 and N2, such
that the sum of weights of edges from N1 to N2 is
maximized. Fig 1 shows an example of a directed graph
and its maximum partition with sum of weights from N1
to N2 being 19. The best non overlapping pairs according
to this partition are be, bd, and ac.

(a) {b)

Fig. 1: A directed weighted graph (a) and its maximum
partition {b)

The work in (Manber ,1997) also presented a heuristic
algorithm (HA) that produces near optimal solutions for
the maximum partition problem. This HA initially
partitions the nodes randomly into two sets N1 and N2.
Next, each node is examined to see whether switching
this node to the other set would improve the total sum
of weights from N1 to N2. Such switches are continued
until no more are possible. The process is repeated a
number of times with different random seeds and the
best result is reported,

The maximum partition problem for a graph with n nodes
has a sclution-space size of 27, corresponding to 2"

subsets, It is also an NP problem {Manber ,1997) . NP
problems can only be solved in polynomial time by non-
deterministic algorithms (Horowitz and Sahni,1978) .
Numerous heuristic methods have been developed to
solve such problems, but none of them promise optimal
solutions.

This research presents a genetic algorithm (GA) to solve
the maximum partition problem. Genetic algorithms are
able to cover large search spaces effectively and have
been very successful in producing near optimal solutions
to NP problems. A genetic algorithm is characterized by
creating solutions through combining parts of different
solutions and making small mutational changes to
solutions [Davis,1991; Goidberrg, 1989;
Holland,1975;Mitchell, 1998]. In this paper we take the
advantages of GAs to solve the maximum partition
problem .

Genetic Algorithms: Genetic algorithms (GAs) are
search algorithms modeled after the behaviors of genetic
processes in nature. Genetic algorithms operate on a
population of individuals, called chromosomes. A
chromosome is a string of characters, called genes and
represents a possible solution in the search space of the
problem. The quality of this solution is called
chromosome fitness. The fitness of each chromosome is
computed according to a problem-dependent fitness
function.

A generation is a GA step in which several events occur,
A number of chromosomes with worst fitness value are
removed from the population. These are replaced by new
chromosomes obtained from applying crossover
operations to the remaining chromosomes in the
population. Crossover is the operation of exchanging
corresponding genes between two chromosomes. In
order to achieve diversity in the population and to
prevent the algorithm from converging prematurely (i.e.
before reaching the optimal solution), mutation is applied
to every chromosome in the population. Mutation is the
operation of changing chromoscme genes randomly with
certain probability. Excluding most fit chromosomes in
the population from mutation is known as elitism.

The Genetic Algorithm to Solve the Maximum
Partition Problem: Following is a definition of a GA to
solve the maximum partition problem for a directed
graph with set of nodes N. A partition of this graph into
two sets of nodes N1 and N2 is represented by a
chromosome of |N| bits, The /th bit indicates whether
node i is in N1 or N2. As an example, the following

Mustafa: A Genetic Algorithm to Solve the Maximum Partition Probiem

chromosome represents the maximum partition shown
in Fig. 1. The fitness of a chromosome is the sum of
weights from N1 to N2 in the partition it represents. For
example, the fithess of the chromosome above is 19,
The GA to solve the maximum partition problem is as
follows.

Algorithm: Maximum Partition (G(n,e): Weighted
Dlrected Graph):

Initialize the population with random chromosomes.
Improve fitness of the initial population by applying
the HA of {Manber ,1997) to (population-size/2}
chromosomes selected randomly. For each such
chromosome, every bit is examined to see whether
flipping this bit would improve the fitness of the
chromosome. This process is repeated until no more
flipping Is possible in the chromosome.

Repeat K times (generations).

Compute the fitness value for each chromosome in
the population.)

Sort the chromosomes in descending order
according to fithess values. The population is then
divided into a lower half and an upper half, based on
fitness values, The upper half contains
chromosomes with the higher (better) fitness
values.

Remove 20% of the chromosomes from the
population, These chromosomes are selected
randomly from the lower half of the population.
Use crossover to construct new chromosomes to
replace the removed ones. Two parent
chromosomes are randomly chosen from the upper
half of the population. The first [N}/2 bits of one
chromosome are concatenated with the last [N|/2
bits of the other chromosome and vice versa. This
creates two new chromosomes, Crossover is
performed (population-size{1Q) times in order to
produce (population-size/5) new chromosomes.
Apply mutation to ail chromosomes in the population
except the chromosome with the highest fithess
value and the chromosornes created by crossover in
step d. Each bit Is considered when a chromosome
is mutated. If a chromosome is in the lower half of
the population, the bit is flipped with a probability of
0.3. If a chromosome is in the upper half of the
popuiation, the bit is flipped with a probability of
0.01.

f. Remove duplicate chromosomes
population and replace them with
generated chromosomes.

Output the highest fitness chromosome in the
population.

Experiments show that the GA above is more likely to
converge to an optimal solution in small number of
generations when the initial population contains some
chromosomes with good fitness values. The first two

2.

w

from the
randomly

4,

72

steps of the algorithm make the initial population by
creating random chromosomes and then improving half
of these chromosomes using the HA of (Manber ,1997)
Experiments show that improving more than half of the
initial population does not improve the GA chances of

converging in a small number of generations. The third

step in the algorithm determines the next generation,
After sorting chromosomes in the current population

according to fitness values, 20% of this population are

randomly chosen from the lower half to be removed.

These are then replaced by new chromosomes obtained |

by applying single point crossover (Davis, 1991) to
chromosomes selected randomly frorm the upper half of

population. The crossover operation is illustrated in the

following diagram.

-
-
-

0 (00
0 (00

0t (4|0

-

d

Produces the new chromosomes:

a
-n
&

C 0|0
0 0[]0
L |00

. e =l

Mutation is applied to the lower half of the population at
much higher rate (30%) than the upper half (1%) to
make more changes to chromosomes with lower fitness.

et B e e e e o R

Other mutation rates did not make the GA converge .

faster.

Results

We experimented with various population sizes on many
graphs. The algorithm converged to an optimal solution,
in a short execution time more often when setting the
population size to approximately (2/3)n where 1 is the
number of nodes in the graph. Smaller populations
resulted in longer time for the algorithm to converge.
Larger populations did not improve the results any
further.

To evaluate the performance of the presented algorithm
against the existing HA of {Manber ,1997) we have
implemented both algorithms using C on an 866 Pentium
III processcr. To ensure aigorithm efficiency in both
space and time, graph partitions in the HA and
chromosomes in the presented GA were implemented as
unsigned integers. Each 16-bit unsigned integer

’

E: represents a set of size 16 where every bit contains
E information about one element. Sets of more than 16
| elements are represented as arrays of unsigned integers.
|- This representation allows performing sets operations in
. the two algorithms efficiently using bit-wise operators.

The two algorithms were applied to 3 complete graphs
. (i.e. there is an edge between every pair of nodes) with
t number of nodes 32, 64, and 128. The weights of edges
b were chosen randomly from the range [0, 32767]. The
¥ two algorithms were run on each graph for different time
periods. in each run, the algorithms were applied a
E number of iterations until the time period expired. Each
E run in a given period was repeated a number of times
using different random seeds. The number of times the
algorithms converged to an optimal solution is reported.

Table 1: Results for running GA and HA 50 times on a
32-nodes graph for different time periods

Run- time # Optimal
(Sec) GA HA
5 38 28
15 45 42
25 49 49
35 50 50

t Table 1 shows results for the 32-nodes graph. Each of
- the two algorithms was run on this graph for the time
b periods: 5, 15, 25, and 35 seconds. Runs of the two
aigorithms were repeated for each of these periods 50
- times. Qur genetic algorithm (GA) converged to an
optimal solution 26% more than HA converged to an
:(' optimal solution when run-time period was 5 seconds. As
_execution time increased, the difference between
“convergence of the algorithms decreased. Both
E algorithms converged to optimal solutions in all of the 50
runs when execution time increased to 35 seconds.

*__Table 2:Results for running GA and HA 50 times on a
‘ 64-nodes graph for different time periods

Run- time # Optimal
E (Sec) GA HA
¢ 100 21 13
200 37 26
. 300 44 34
£ 400 43 41
500 45 40

E 600 . 48 48

i The two algorithms were run on the 64-nodes graph also
' 50 times for each of the time periods 100, 200, 300,
E 400, 500, and 600 seconds. The results are shown in
E Table 2. The GA converged to an optimal solution more
- than HA by about 61% when the algorithms were run for
100 seconds. The GA also converged to an optimal
L solution more than HA by about 42% for the 200-
L seconds execution time period. When run-time was
- increased to 300 seconds, the GA converged more than
‘the HA by about 29%. The difference in convergence
times became smaller when the two algorithms executed
b for a larger time period. Both algorithms converged in 48
out of the 50 runs when execution time was set to 600
L seconds. Table 3 shows the results for the 128-nodes
b graph. Due to large execution times for this graph, which
contains 128 X 128 edges, runs were repeated only 20

Mustafa: A Genetic Algorithm to Solve the Maximum Partition Problem

times. The execution time periods for this graph were
2000, 3000, 4000, and 5000 seconds. The GA converged
to an optimai solution more than HA by about 70% when
the two algorithms ran for 2000 seconds. As with the
other two graphs, the difference between convergence
times decreased as execution time increased. Both
algorithms converged in most of the 20 runs when
execution time reached 5000 seconds Finally.

Table 3: Results for running GA and HA 20 times on a
12B-nodes graph for different time periods

Run- time # Optimal
(Sec) GA HA
2000 12 7
3000 14 10
4000 15 14
5000 18 16
Conclusions

We presented an algorithm to solve the maximum
partition problem. This problem arises in text
compression where the aim is to find character pairs to
be replaced by unused characters in such away that the
compressed text can be searched directly. The presented
algorithm combines a heuristic method introduced in
(Manber, 1997} and genetic algorithms. Resuits of
running the algorithm on random graphs how that it
converges to an optimat solution faster than the existing
heuristic algerithm. A sample of these results was given
above. We believe that the ability of the aigorithm to
converge to an optimal solution faster is very valuable
especially in text compression applications. This is even
becomes more important when there is a need to apply
the algorithm frequently in order to determine different
character codes for different text parts.

Future work is needed to investigate the effect of using
the heuristic in (Manber ,1997) with GAs after the
initialization step. One possibility, for example, is to
apply this heuristic on part of the population after every
certain number of iterations. Other future work is needed
to incorporate the presented algorithm with the text
compression method in (Manber ,1997) . In particular,
the algorithm needs to be tested on graphs that
represent characters distribution in real texts. The impact
of the resulting character codes on both space and time
need to be investigated.

References

Davis. 1991, Handbook of Genetic Algorithms., Van
Nostrand Reinhold, New York.

Goldberg. 1989, Genetic Algorithms in Search,
Optirmization, and Machine Learning. Addison-Wesly,

Holland. 1975.Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Horowitz and Sahni. 1978. Fundamentals of Computer

Algorithms. Computer Science Press, Inc,
Rockville, MD.
Manber. 1997. ACM Transactions on Information

Systems, Vol, 15, No. 2, Pages 124-136.
Mitchell. 1998, An Introduction to Genetic Algorithms,
MIT Press.

