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A Genetic Algorithm to Solve the Maximum Partition Problem 

W a e l  Mus ta fa  
Computer Science Department 

An -Na jah  Na t i ona l  University, Nablus, Palest ine'  

Abstract: A maximum paNtEn of a directed weighted graph is partitioning the nodes into two sets such that 
it maximizes the total weights of edges between the two sets. I n  this study a genetic algorithm is proposed 
to solve the maximum partition problem. Experiments performed on randomly generated graphs of different 
sizes show that the proposed algorithm converges to an optimal solution faster than the existing heuristic 
algorithm. 
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Introduction 
The work of Manber (Manber ,1997) , which focused on 
a compression method that allows fast search directly on 
compressed text, introduced a new graph problem. The 
problem is determining which pairs of characters to be 
replaced by single unused characters. Pairs of characters 
should be chosen such that more compression is 
achieved. Additionallv. to make direct search throuoh the ~ ~ - ~~ 

compressed text possole, pars cannot overlap (1.e. tne 
flrst cnaracter in one palr cannot oe tne second cnaracter 
in another pair). 
The problem above is abstracted as a graph problem, 
known as the Best-Non-Overlapping-Pairs Problem in 
(Manber ,1997) . A directed graph G = (N, E), is 
constructed where the nodes correspond to unique 
characters used in the text. Edges represent character 
pairs and weights represent the frequencies of these 
pairs in the text being compressed. We want to partition 
the nodes of the graph into two sets N1 and N2, such 
that the sum of weiahts of edaes from N1 to N2 is 
maximized. Fig 1 shows an example of a directed graph 
and its maximum partition with sum of weights from N1 
to N2 beino 19. The best non overlaooina oairs accordina . .  - .  
to this parition are bc, bd, and ac. 
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Fig. 1: A directed weighted graph (a) and its maximum 
partition (b) 

The work in (Manber ,1997) also presented a heuristic 
algorithm (HA) that produces near optimal solutions for 
the maximum partition problem. This HA initially 
partitions the nodes randomly into two sets N1 and N2. 
Next, each node is examined to see whether switching 
this node to the other set would improve the total sum 
of weights from N1 to N2. Such switches are continued 
until no more are possible. The process is repeated a 
number of times with different random seeds and the 
best result is reported. 
The maximum partition problem for a graph with n nodes 
has a solution-space size of 2", corresponding to 2" 

subsets. I t  is also an NP probem (Manoer ,1997) . kP 
problems can only oe solved In po ynomla. tome oy non- 
oetermlnlst c a aorltnms (HOrOw tz ana Sann..19781 
Numerous heucstic methbds have been deveioped'to 
solve such problems, but none of them promise optimal 
soiutions. 
This research presents a genetic algorithm (GA) to solve 
the maximum partition problem. Genetic algorithms are 
able to cover large search spaces effectivelv and have 
Deen very succesif.. In producing near op t~m i l  sout ons 
to NP pro0 ems. A genetlc aigor~thm IS characterzed oy 
creat ng solut ons tnrougn comolnlng parts of d~fferent 
solutions ana mak ng smal mLtat onal cnanges to 
so utlons (Dav1s.1991; Go~dberrg, 1989, 
Holland.1975:M~tcneI ,19981. I n  m s oaoer we take the 
advantages of GAS to so6e the maximum partition 
problem . 
Genetic Algorithms: Genetic algorithms (GAS) are 
search a gorlthms mooelea after the-oehav~ors'of genet~c 
processes in natbre. Genet c a gorlthms operate on a 
popu at on of ma vldua s, catlea cnrornosomes. A 
chromosome is a strina of characters. called oenes and . ~~ ~~ -~ ~~ ~ ~ 

represents a possible Glution in the search space of the 
problem. The quality of this solution is called 
chromosome fitness.   he fitness of each chromosome is 
computed according to a problem-dependent fitness 
function. 
A generation is a GA steo in which several events occur. 
A iumber  of chromosomes with worst fitness value are 
removed from the population. These are replaced by new 
chromosomes obtained from aoolvina crossover . ,  , - 
operations to the remaining chromosomes in the 
population. Crossover is the operation of exchanging 
CorresDondino aenes between two chromosomes: 1; 
order t o  achieve diversity in the population and to 
prevent the algorithm from converging orematurely (i.e. - .. 
before reach~ng theopt ma1 so l~ t~on) ,  mutauon IS app ea 
to every chromosome n the popdlatlon. Mutat~on IS tne 
operation of changing chromosome genes randomly with 
certain probability. Excluding most fit chromosomes in 
the population from mutation is known as elitism. 
The Genetic Algorithm to Solve the Maximum 
Partition Problem: Following is a definition of a GA to 
solve the maximum partition problem for a directed 
graph with set of nodes N. A partition of this graph into 
two Sets of nodes N1 and N2 is represented by a 
chromosome of IN1 bits. The Pth bit ind~cates whether 
node i is in N l  or N2. As an example, the following 
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chromosome represents the maximum partition shown 
in Fia. 1. The fitness of a chromosome is the sum of 

~ ~ 

weights from N1 to N2 in the partition it represents. F& 
example, the fitness of the chromosome above is 19. 
The GA to solve the maximum partition problem is as 
follows. 
Algorlthm: Maximum Partit ion (G(n,e): Weighted 
Directed Graph): 
1. Initialize the population with random chromosomes. 
2. Improve fitness of the initial population by applying 

the HA of (Manber ,1997) to (population-sizel2) 
chromosomes selected randomly. For each such 
chromosome, every bit is examined to see whether 
flipping this bit would improve the fitness of the 
chromosome. This process is repeated until no more 
flipping is possible in the chromosome. 

3. Repeat K times (generations). 
a. Compute the fitness value for each chromosome in 

the popuiation. 
b. Sort the chromosomes in descending order 

according to fitness values. The popuiation;~ then 
divided into a lower half and an upper half, based on 
fitness values. The upper half contains 
chromosomes with the higher (better) fitness 
values. 

c. Remove 20% of the chromosomes from the 
population. These chromosomes are selected 
randomly from the lower half of the population. 

d. Use crossover to construct new chromosomes to 
replace the removed ones. Two parent 
chromosomes are randomly chosen from the upper 
half of the popuiation. The first INI/2 bits of one 
chromosome are concatenated with the last INV2 
bits of the other chromosome and vice versa. This 
creates two new chromosomes. Crossover IS 
performed (populatron-srzell0) t mes in order to 
prodbce (populatron-srze15) new cnromosomes. 

e Apply mutatlon to al cnromosomes In the populatlon 
exceot the chromosome wlth tne hlghest fltness 
value and the chromosomes created b y  crossover in 
step d. Each bit is considered when a chromosome 
is mutated. I f  a chromosome is in the lower half of 
the population, the bit is flipped with a probability of 
0.3. I f  a chromosome is in the upper half of the 
popuiation, the bit is flipped with a probability of 
n n i  

f. Remove duplicate chromosomes from the 
population and replace them with randomly 
generated chromosomes. 

4. Output the highest fitness chromosome in the 
popuiation. 

Experiments show that the GA above is more likely to 
converge to an optimal solution in small number of 
generations when the initial population contains some 
chromosomes with good fitness values. The first two 

steps of the algorithm make the initial population by 
creating random chromosomes and then improving half 
of these chromosomes using the HA of (Manber ,1997) 
Experiments show that improving more than half of the 
initial population does not improve the GA chances of 
converging in a small number of generations. The third 
step in the algorithm determines the next generation. 
After sorting chromosomes in the current popuiation 
according to fitness values, 20% of this population are 
randomly chosen from the lower half to be removed. 
These are then replaced by new chromosomes obtained 
by aDDivina sinale ooint crossover (Davis. 19911 to 
chromoiomes slected randomly from'the -;per half of 
populatlon. The crossover operation IS lllustratea n the 
following diagram 

Produces the new chromosomes: 

Mutation is applied to the lower half of the population at 
much higher rate (30%) than the upper half (1%) to 
make more changes to chromosomes with lower fitness. 
Other mutation rates did not make the GA converge 
faster. 

Resu l ts  
We experimented with various population sizes on many 
graphs. The algorithm converged to an optimal solution, 
in a short execution time more often when setting the 
population size to approximately (2/3)n where n is the 
number of nodes in the graph. Smaller populations 
resulted in longer time for the algorithm to converge. 
Larger populations did not improve the results any 
further. 
To evaluate the performance of the presented algorithm 
against the existing HA of (Manber ,1997) we have 
implemented both algorithms using Con an 866 Pentium 
111 processor. To ensure algorithm efficiency in both 
space and time, graph partitions in the HA and 
chromosomes in the presented GA were implemented as 
unsigned integers. Each 16-bit unsigned integer 
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epresents a set of size 16 where every bit contains 
nformation about one element. Sets of more than 16 
!iements are represented as arrays of unsigned integers. 
'his representation allows performing sets operations in 
he two algorithms efficiently using bit-wise operators. 
'he two algorithms were applied to 3 complete graphs 
i.e. there is an edge between every pair of nodes) with 
lumber of nodes 32. 64. and 128. The weiahts of edaes 
"ere chosen randomly from the range [0,327671. i h e  
woaigorithms were run on each graph for different time 
)eriods. I n  each run. the alaoilthme m r e  amlied a 
lumber of iterations "ntil the ;me period expired. Each 
un in a given period was repeated a number of tirnes 
lsina different random seeds. The number of times the 
llgoithms converged to an optimal solution is reported. 

lable 1: Results for running GA and HA 50 times on a 
32-nodes qraph for different Lime periods 

7un- time # Optimal 
;Set) G A HA 
> 38 28 
15 45 42 

dQ AQ 

rable 1 shows results for the 32-nodes graph. Each of 
:he two algorithms was run on this graph for the time 
periods: 5, 15, 25, and 35 seconds. Runs of the two 
algorithms were repeated for each of these periods 50 
times. Our genetic algorithm (GA) converged to an 
~ptimai solution 26% more than HA converged to an 
Jptimai solution when run-time period was 5 seconds. As 
Execution time increased. the difference between ~~~~~~ ~ ~ 

anvergence of the algirltnms decreased. Both 
alaoritnms converged to opt.mal solut~ons in a. of tne 50 
N ~ S  when executbn time increased to 35 seconds. 

Table 2:Results for running GA and HA 50 times on a 
64-nodes graph for different time periods 

Run- time # Optimal 
[Sec) G A HA 
100 21  13 

The two algorithms were run on the 64-nodes graph also 
50 times for each of the time periods 100, 200, 300, 
400. 500. and 600 seconds. The results are shown in 
~ab ie2 .  i h e  GA converged to an optimal soision more 
than HA by aoout 61% when the a gorithms were run for 
100 seconds. The GA also converged to an optimal 
Solution more than HA by about 42% for the 200- 
seconds execution time period. When run-time was 
increased to 300 seconds. the GA converged more than 
the HA by about 29%. i h e  difference in convergence 
times became smaller when the two algorithmsexecuted 
for a laraer time ~er iod.  Both aiaorithmsconverged in 48 
out of t6e 50 runs when exectkon time was set to 600 
seconds. Table 3 shows the results for the 128-nodes 

tirnes. The execution time periods for this graph were 
2000.3000.4000. and 5000 seconds. The GA converaed 
to anoptmal soluiion more than HA by aboLt 70% &en 
the two algoritnms ran for 2000 seconds. As w tn the 
other two graphs, the difference between convergence 
times decreased as execution time increased. Both 
algorithms converged in most of the 20 runs when 
execution time reached 5000 secotds Finally. 

Table 3: Results for running GA and HA 20 tirnes on a 
128-nodes qraph for different time periods 

Run- time # Optimal 
pet) G A HA 
mnn 17 7 

Conclusions 
We presented an algorithm to solve the maximum 
partition Drobiem. This DrObiem arises in text 
compress on where the a m  is to fmd cnaracter pars to 
oe rep aced by unused characters n such away that the 
COmDreSSed text can be searched directlv. The DreSented 
algorithm combines a heuristic methob introduced in 
(Manber, 1997) and genetic algorithms. Results of 
runnina the aiaorithm on random araohs how that it 
converges to an-opt mat solutlon faster than the exlst ng 
neurlst c a gonthm. A sample of these results was g~ven 
above. We believe that the abilitv of the aiqorithm to 
converge to an optimal solution faster is v e 6  valuable 
especially in text compression applications. This is even 
becomes more important when there is a need to apply 
the algorithm frequently in order to determine different 
character codes for different text parts. 
Future work is needed to investigate the effect of using 
the heuristic in (Manber ,1997) with GAS after the 
initialization step. One possibility, for example, is to 
apply this heuristic on part of the population after every 
certain numberof iterations. Other future work is needed 
to incorporate th=~presented algorithm with the text 
compression method in (Manber ,1997) . I n  particular, 
the alaorithm needs to be tested on araDhs that 
represint characters a str~but~on on real t e x t c ~ h e  rnpact 
of the resulttng character codes on botn space an0 tlrne 
need to be investigated 
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graph. Due to large execution times forthis graph, which 
contains 128 X 128 edges, runs were repeated only 20 


