A Binary ART Neural Network Methodology for Computer-Aided Process Planning of Milling Parameters

Amjed Al-Ghanim
Department of Industrial Engineering, An-Najah National University
Nablus (P.O. Box 1712) – Palestine

Abstract: Artificial neural networks have been successfully employed for providing efficient solutions for decision making problems and gained increased significance for their use in computer integrated manufacturing environments as effective tools for improving productivity and decision quality. The function of process planning in machining operations is a prominent one for neural network applications since it has direct impact on overall manufacturing productivity. This paper presents analysis and results of applying self-organizing neural networks to the selection of machining parameters of milling processes. The importance of this approach stems from the ability of neural nets to handle vague or ill-structured problems and the inherent capability of generalizing solutions to unseen problems. Furthermore, self-organizing neural networks do not require full knowledge of ‘output’ data needed during the training phase; only a small portion of the data is needed for model calibration. Simulations using ART1 neural model were applied to the selection of tool material type and tool entry strategy, and the results demonstrated a high potential for the development of neural network modules for practical applications.

Key Words: Artificial Neural Network, Machining Operation, Machining Parameters, Milling Process

Introduction

Research Background: Process planning is a function that maps design features to manufacturing features (Bedworth et al., 1991). It represents the link between engineering design and shop floor manufacturing and determines the manufacturing operations required for transforming a part from a rough state to a finished state specified by the engineering drawing. As related to machining, process planning consists of a series of tasks to interpret the product model including selection of machine tools, tool sets, setups, and machining sequences (Cox et al., 1993). As such, process planning is an involved activity that has a large number of variables describing parts to be produced and the production resources.

There are two systematic computer-aided process planning strategies; namely variant planning and generative planning. The distinguishing feature of the variant planning strategy is that former plans are retrieved and modified for new parts, while generative planning is a strategy that strives to create a new plan for a part, from scratch, based on analyzing part Geometry and other related specifications (Bedworth et al., 1991).

Group Technology and Expert Systems technology have been employed to assist in process planning where these methodologies are based on algorithms and machinists' expertise to generate process plans (Kusiak, 1991; Gupta, 1988; 1990 and Altin and Zhang, 1989). Various methodologies have been employed to implement generative CAPP expert systems including among others, case-based reasoning (Cox et al., 1993), feature-based recognition (Tsang and Brisseau, 1989 and Houten et al., 1989), and solid modeling techniques (Descote, Latombe, 1983 and Jared 1983).

Numerical Control (CNC). In most cases during the planning for the CNC machining operations, it is necessary to consult an expert. Whether that expert is a machinist, part programmer or a knowledge base, the specific set-up and run parameters for machining processes must be determined. To improve the productivity of machining process planning, focus is made on the ability of pattern recognition systems such as neural model to identify manufacturing features that needs to be machined.

Most research efforts have focused on utilizing expert systems technology to implement process planning systems. These systems offer assistance based on capabilities ranging from fast retrieval of existing plans to generating plans based on interpreting product model Geometry. Expert systems have shown success in automating certain aspects of process planning. However, with the increasing level of complexity of manufacturing environments, and the increasing demand for achieving higher level of integration, expert systems methodology suffers some limitations. First, when domain knowledge is complex and intuitive as in the case of process planning, the knowledge acquisition phase of system development becomes a real bottleneck because it is not always possible to extract and represent knowledge in an explicit form (Cox et al., 1993; Alting and Zhang, 1989 and Giarratano and Riley, 1989). Second, when the system rule base gets larger, the knowledge validation process becomes difficult and prone to errors (Al-Ghanim and Talhouni, 1994). Finally, a dynamic manufacturing environment requires utilization of fast adaptive systems. However, expert systems, due to explicit knowledge representation, show limited adaptive capabilities, and they do not tolerate missing or inaccurate data.

To compensate for some of these limitations and enhance the expert systems approach, some research efforts have focused on the use of neural network methodologies for process planning.
Table 1: Input and Output Decision Variables and Related Values for Milling Operations

<table>
<thead>
<tr>
<th>Input Space Variables</th>
<th>Selected Values of Input Variables</th>
<th>Output Space Variable</th>
<th>Selected Values of Output Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machined Feature Type</td>
<td>Slot</td>
<td>Notch</td>
<td>Step</td>
</tr>
<tr>
<td>Depth of Cut</td>
<td>Very deep</td>
<td>Deep</td>
<td>Medium</td>
</tr>
<tr>
<td>Part Material Hardness</td>
<td>Very hard</td>
<td>Hard</td>
<td>Medium</td>
</tr>
<tr>
<td>Part Machinability</td>
<td>Very high</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Fixture Rigidity</td>
<td>Very high</td>
<td>High</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Table 2: Encoding Scheme of the Input Decision Variables

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Values and Codes of Inputs Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machined Feature Type</td>
<td>Slot 00, Pocket 01, Notch 10, Step 11</td>
</tr>
<tr>
<td>Depth of Cut</td>
<td>Very deep 01, Deep 01, Medium deep 10, Shallow 11</td>
</tr>
<tr>
<td>Part Material Hardness</td>
<td>Very hard 01, Hard 01, Medium hard 10, Not hard 11</td>
</tr>
<tr>
<td>Part Material Machinability</td>
<td>Very high 01, High 01, Medium 10, Low 11</td>
</tr>
<tr>
<td>Fixture Rigidity</td>
<td>Very high 01, High 01, Medium 10, Low 11</td>
</tr>
</tbody>
</table>

Table 3: Performance Measurements of the Developed System: Tool Material Type Model

<table>
<thead>
<tr>
<th>Vigilance factor (rho)</th>
<th>SOC Number of presented cases or Patterns</th>
<th>Rate of identification (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>119</td>
<td>83</td>
</tr>
<tr>
<td>0.60</td>
<td>141</td>
<td>78</td>
</tr>
<tr>
<td>0.65</td>
<td>138</td>
<td>88</td>
</tr>
<tr>
<td>0.70</td>
<td>170</td>
<td>91</td>
</tr>
<tr>
<td>0.80</td>
<td>200 (terminated at 200)</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 4: Performance Measurements of the Developed System: Cutting Strategy Model

<table>
<thead>
<tr>
<th>Vigilance factor (rho)</th>
<th>SOC Number of presented cases or patterns</th>
<th>Rate of identification (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>139</td>
<td>87</td>
</tr>
<tr>
<td>0.60</td>
<td>131</td>
<td>80</td>
</tr>
<tr>
<td>0.65</td>
<td>158</td>
<td>88</td>
</tr>
<tr>
<td>0.70</td>
<td>160</td>
<td>96</td>
</tr>
<tr>
<td>0.80</td>
<td>190</td>
<td>89</td>
</tr>
</tbody>
</table>

For example, Cox et al., (1993) used a multilayer back propagation network for process planning of milling operations (Cox et al., 1995), while Knapp and Wang applied neural networks for the automatic acquisition of process planning knowledge (Knapp and Wang, 1992). Chen proposed an unsupervised neural network methodology for setup generation and feature sequencing (Chen, 1993).

This paper presents methodology and results of applying a Self-organizing neural model to the process planning of milling operations. First, process planning is cast as a pattern recognition problem, and viewed as a mapping function between process features and machining strategies. Second, Adaptive Resonance Theory neural
networks (ART) are developed for automating an important aspect of process planning decisions, namely, cutting tool material.

Casting Process Planning as a Pattern Recognition Problem: Pattern Recognition (PR) can be characterized as an information mapping process taking place over a set of metric or non-metric spaces (Shalkof, 1992). A relation exists between class-membership space and a pattern space. Each class corresponds to a subset of patterns in the pattern space where these pattern spaces may overlap allowing patterns from different classes to share the same attributes. In turn, the pattern space is mapped, via another relationship, into an observation space with feature patterns. In simple terms, the class-membership space, also called the output space, represents the solution set to the problem at hand, while the pattern space represents the input variables or input data that are needed to solve the problem.

Process planning in general can be cast as a pattern recognition problem; that is a set of mappings from one space to another space. First, process planning for machining is a multivariable input/output process including among others part dimensions, material, surface finish, fixture rigidity, tool material type, spindle speed, feed rate, depth of cut, and tool entry strategy. Therefore, to facilitate analysis one should precisely identify the output decision quantities and corresponding input decision quantities. It should be noted that the basic idea of utilizing neural networks as pattern recognizers is that the output decision variables should be chosen such that their values can be grouped into a finite number of classes. Thus, as related to milling operations, the output decision variables can be, for instance, cutting tool material type, tool type, tool condition, tool entry strategy, etc. These variables can represent the input to the machine that will have to be specified at each stage of the planning process.

To demonstrate the modeling process of process planning for milling operations as a pattern recognition problem, focus is made on two encountered output decision variables, which are the cutting tool material type and tool entry strategy. These decision variables are confined to the most commonly used values in the output decision space representing tool material types and cutting strategies for milling operations. For the tool material type decision variable, these values are high-speed steel, carbide, or ceramic, while the tool entry strategy decision variable are free entry, drill a hole, ramp, or plunge. In turn, the output variable depends on a number of factors that form the input decision variable or decision space. These variables include machined part features, depth of cut, part material hardness, part material machinability, and fixture rigidity. It is important to note that each of these input variables may assume a very large number of numerical values (theoretically infinity), but to use the language of machinist in expressing their experience, each variable is confined to have only four values.

Based on this selection of input and output decision variables and related possible values, the formulation of milling process planning problem is presented in Table 1 as a pattern recognition problem. The input pattern is represented by input space variables and output pattern is represented by output space variables. The values of these spaces represent the input data set and the solution set respectively.

The research methodology adopted here is aimed at exploring the utilization of ART neural network models as supportive decision-making tools in machining process planning. To carry out this objective, a binary ART neural network model has been used as a pattern recognizer, and implemented and tested to make decisions on tool type material and tool entry strategies. Since binary ART models require binary input data only, the input decision variables need transformation into binary form. The encoding of the input variables into binary numbers according to ART1 neural model is illustrated in section "Input Data and Output Patterns."
created), the weights are frozen and the system can then be used for decision making as new cases are presented to the system.

ART1 Training Algorithm: The basic structure of the following learning algorithm is based on a modified version of the training algorithm developed by (Al-Ghanim, 1997) which in turn is based on the Adaptive Resonance Theory networks for binary inputs (ART1) as presented by (Pao, 1989). Therefore, a preprocessing step is necessary to transform the analog process output into a binary-coded form. A binary encoding procedure based on a 10-digit code is employed (section “Encoding of Input Data”). In this encoding scheme, each of the above 5 input variables is represented by 2 binary digits that can encode up to 4 values.

Training Algorithm

Input: A set of training examples \(\{x_i, i=1, \ldots, L\} \). It is represented by a matrix of dimension \(L \times k \), where \(L \) is the number of training examples and \(k \) is the pattern length (i.e., \(k=10 \)).

Output: Unlabelled cluster(s) representing various classes of the tool material type.

Steps:

1. Perform encoding to convert training examples into binary format.
2. Start with no cluster centers formed (i.e., all weights are equally initialized, the bottom-up, \(b_{ij} = \frac{1}{L+1} \), and the top-down, \(t_{ij} = 1 \), for all \(i \)'s and \(j \)'s).
3. Perform iterations until no more clusters can be formed. At this point, stop since stability (i.e., convergence) has been achieved.
4. Present a new training example \(x \) (if any) to input nodes where \(x_i = (1,0) \).
5. Use bottom-up processing to obtain the activation value for each output node \(j \) \((j=1, \ldots, H) \): \(y_j = \sum b_{ij} x_i \).
6. Select the output node with the largest \(y_j \) value, that is, the winning node representing the closest cluster \(J \).
7. Verify that \(x \) truly belongs to the \(J \)th cluster by performing top-down processing; that is, form the weighted sum \(t_{ij} x_i \).
8. Test for vigilance to verify if \(x \) belongs to the \(J \)th cluster: \((\sum t_{ij} x_i) / x > \rho \). If the condition is satisfied, proceed to step 9. Otherwise, go to step 10.
9. Update the weights \(b_{ij} \) and \(t_{ij} \) for that specific node \(J \) and all \(i \) at the current iteration, \(l+1 \), using the update rules:

\[
t_{ij}(l + 1) = t_{ij}(l - 1) x_i
\]

\[
b_{ij}(l + 1) = \frac{t_{ij}(l - 1) x_i}{0.5 + \sum_{i=l}^k t_{ij} x_i}
\]

10. Since \(x \) does not belong to the node that was the most likely, deactivate that node and go to step 6 to start the next winning node. If all nodes are considered and no assignment is made, then form a new cluster with vector \(x \) as the cluster center.

Calibration and Classification Algorithm: The network trained using the above algorithm can be used in real operating mode (i.e., classification). Before the system can be utilized in real operation, it requires calibration. This process identifies which nodes of the network model correspond to the different classes of the tool material type and cutting strategy.

Algorithm for Classification of Tool Material Types or Cutting Strategies

Input: Examples representing input decision variables and data as given by input vector structure whose outputs are known (i.e., corresponding tool material type or cutting strategy is known).

Output: Class codes of the corresponding tool material type or cutting strategy.

Calibration:

1. Supply the trained neural network model with a set of few binary-coded patterns representing tool materials types and another set representing tool entry strategies. The number of such examples required at this step is found to be about 17% of the number of examples used for training, that is (35-40) examples.
2. Determine the set of nodes \(J \) that correspond to the clusters of the classes of the output decision variables.

Classification:

1. Supply the network model with unknown binary-encoded example representing a part to be machined.
2. Determine the node \(j \), if it exists, that corresponds to each presented example.
3. If a node \(j \) exists and belongs to classes of tool material type or tool entry strategy, then a decision can be made about related output decision, otherwise, no decision can be made.

Materials and Methods

Input Data and Training Parameters: The simulation methodology aims at implementing the above training/testing policy which provides a classification capability of new cases (i.e., new parts to be machined). A set of 2 hundred training examples is used; that is, the training period is forced to terminate when a maximum of 2 hundred examples are presented. Training and testing of the network take place using various values for the vigilance factor. The vigilance factor controls the required degree of resemblance (or similarity) among input examples. Therefore, it controls the number of possible clusters formed for a particular class; the higher the vigilance factor, the higher the number of clusters. Values for this parameter are selected in the range (0.5 - 0.8). A simulation run consists of three phases:

1. Training the network until it converges (e.g., forming a stable set of clusters to represent the three classes pertaining to tool material type or four classes of tool entry strategies).
2. Testing the network using various sample examples, evaluative performance measures.
3. Two hundred cases are used for training and another one hundred cases for testing in each simulation run. Each simulation run is performed at a specific vigilance level, that is, training and testing are performed using the same vigilance factor. Since two machining decisions are considered in this research, two ART1 network models have been built, one for tool material type and one for tool entrance strategy.

Encoding of Input Data: The input vector contains 5 features where each feature is encoded into 2 binary digits, thus, making the length of the input vector 10 binary digits. This encoding scheme will allow representation the four values of each input feature given in Table 1. This scheme is summarized in Table 2 below. To illustrate this procedure, consider a machining part with the following features: Feature Type = Slot, Depth of Cut = Medium deep, Material Hardness = Hard, Part Machinability = Very high, and Fixture Rigidity = Low. The code for this example will be (0001010011). It is important to note that the order of input variables in the input vector is as given in Table 2.
Al-Ghanim: A Binary ART Neural Network Methodology

This binary form allows the extraction of the relevant structural information needed to characterize output
decision classes (Al-Ghanim, 1997). Convergence is
achieved when no new clusters are constructed to account
for new input examples. Alternatively, if convergence
is not likely to be realized especially when the vigilance
factor is close to 1, the learning process is forced to
terminate.

Performance Measures: To evaluate the performance of
the system based on the proposed training policy, a set of
performance measures is defined. Rate of Identification
(ROI) and the Speed of Convergence (SOC) were used as
given in (Al-Ghanim, 1997).

The Rate of Identification: The Rate of Identification
(ROI) characterizes the ability of the system to correctly
identify new input patterns. It is the percent of correctly
classified patterns when the system is exposed to a
certain number of new examples. This measure gives the
classification accuracy of the system.

Speed of Convergence: Speed of Convergence (SOC)
describes the speed of convergence at which a stable set of
clusters is established. This measure is very
informative, as it is important, in a real application, to
know how fast the system would learn the environmental
process data and be reliably ready for on-line process
monitoring. This measure can be computed as the
number of input patterns needed to form a stable set of
clusters.

Results and Discussion

Once the self-organizing neural network has converged,
the training period is terminated. To test each trained
model, 100 input patterns representing various cases of
machined parts are used. Results of the network
performance are summarized in Tables 3 and 4. As seen
from the results, the Speed of Convergence, SOC,
decreases as the vigilance factor increases as shown by
the number of required input patterns needed for
convergence. Under this training and testing policy, the
ROI has shown an increasing trend as the vigilance factor
is increased.

As mentioned earlier, the objective of utilizing
unsupervised learning policy is to allow the system
capture machining expertise and use it in decision making
throughout process planning of machined parts. The
utilization of the system is mainly to classify new
machining cases into one of the output classes given by
the three types of tool material type or the four types of
tool entry strategies. As evidenced by the results, this
approach can be applied to automate the process planning
in a real-life setup as part of an integrated CAM system.
The average convergence speed and the rates of
identification obtained are within acceptable limits when
compared with results in the literature for different types
of methodologies.

Conclusion

This paper has presented a methodology and analysis
results of applying self-organizing neural nets for
automating process planning of machining operations.
The methodology lends itself for automation within an
integrated CAM system, and the results demonstrated
that system accuracy is comparable with similar system
using supervised learning techniques (Cox et al.,
1993; Knapp and Wang, 1992). On advantage of this
system is that does not require full input data with respect
to the output decision variables. Further research should
make use of this methodology for other important process
planning decisions such as cutting tool size and number of
flutes of cutter, and cutting strategies. Several other
encoding schemes can also be experimented based on
more than 2-digit code.

References

Alting, L. and H. Zhang; 1989. 'Computer-Aided Process
Planning: state-of-the-ART survey', International J. of

Al-Ghanim, A. and B. Tallhoi; 1994. 'A Diagnostic
Expert Sys. for IBM PCs and Compatibles', Muta J.
for Scientific Research, Vol. 9, 3, Muta Uni., Jordan.

Algorithm for Identifying Process Behavior on Control
Charts and a Comparison with Supervised Learning
Approaches", Computers and Industrial Eng., Vol. 32,
No. 1.

Computer-Integrated Design and Manufacturing,
McGraw-Hill.

Sequencing using Unsupervised Learning Algorithm”
in Proceedings of the NSF Design and Manufacturing
Systems Conference, Charlotte, California.

Cox, L., D. Culler and A. Al-Ghanim; 1993. 'Artificial
Intelligence Application Utilization in Computer
Numerical Control Manufacturing', in Proc. of IIE
Conference, Los Angeles, 499-506.

Cox, L., D. Culler and A. Al-Ghanim; 1995. "Machining
Strategies Collected, Stored, and Utilized with Artificial
Neural Networks", Proceeding of ANNIE'95
International Conference, 967-972, St. Louis,
Missouri.

Descote, Y. and J.C. Latombe; 1983. 'GARI: An Expert
Sys. for Process Planning, Solid Modeling Computers',

Conference in St. Louis, 269-274.

Gupta, T., 1990. 'A Survey of Expert Systems in
Manufacturing and Process Planning: Current Dev. and
it Future', Computers and Industrial Eng., 18: 1-
69-80.

Giarratano, J. and G. Riley; 1989. 'Experts Systems:
principle and programming', PWS publishing company,
Boston.

Grossberg, S. and G. Carpenter; 1987. "ART2:
Self-organizing of Stable Category Recognition Codes

and Universal Coding: I. Parallel Dev. and Coding of Neural
Feature Detectors", Biological Cybernetics,
23:121-134.

Jared, G., 1983. 'Shape Features in Geometric Modeling,
York.

and utilizing process planning knowledge using neural
networks", J. of Intelligent Sys. in Manufacturing, 30:
4.

Kusiak, A., 1991. 'Group Technology for Flexible
Manufacturing Systems', Handbook of Flexible

Pao, Y. H., 1989. 'Adaptive Pattern Recognition and
Neural Networks', Addison-Wesley, Mass.

Shalkof, R. J., 1992. 'Pattern Recognition: Statistical,
Structural, and Neural Approaches', John Wiley and
Sons, Inc., USA.

Tsang, J. P. and D. Brissaud; 1989. 'A Feature-Based
Approach to Process Planning', Computers in Industrial
Eng.

Van Houten; van's Erve and Kals; 1989. 'A feature Based
Computer Aided Process Planning', Laboratorium voor
Produktietechniek, Univ. Twente, Netherlands, in Proc. of
the 21st CIRP International Seminar on
Manufacturing Systems, Stockholm.

Zurada, J. M., 1992. 'Introduction to Artificial Neural
Systems', West Publishing Company, USA.

298